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Abstract 

 

Experimental studies of turbulent wall-bounded flows are often desired to capture the complete 
spectrum of turbulent scales across the entire wall-normal direction. Achieving this objective 
in a single measurement is typically challenging if not impossible at moderate and high Reyn-
olds numbers since the field of view required to capture the large-scale motions contradicts 
the resolution necessary to adequately resolve the small-scale flow structures. Moreover, 
standard cross-correlation based PIV evaluation routines further reduce the spatial resolution 
of the acquired particle images since they require finite-size interrogation windows for the ve-
locity estimation. However, the introduction of a deep learning based optical flow estimator 
called Recurrent All-pairs Field Transforms-PIV (RAFT-PIV) (Lagemann et al. 2021a, 2022a) 
solves this resolution reduction drawback of traditional methods by operating on the original 
image resolution, i.e., RAFT-PIV provides a velocity vector for each pixel. We will demonstrate 
that the increased spatial resolution has the potential to simultaneously capture the large-scale 
flow features in the outer flow field and the velocity distribution close to the wall, i.e., in the 
buffer layer and the viscous sublayer, within the same measurement setup. Precisely, this 
ability is shown with a wall-normal PIV setup covering the complete channel half height of a 
turbulent channel flow at 𝑅𝑒𝜏 ≈ 1100. Based on a combination of experimental and open-
source DNS data, we will demonstrate that RAFT-PIV can be used to estimate relevant turbu-
lence statistics, e.g., stresses and energy spectra, accurately - even in close vicinity to the wall 
where established cross-correlation based PIV tools usually become unreliable. 
 

Introduction 

 

In the past few years, several algorithms have been proposed that leverage deep learning 

techniques within the data analysis workflow of particle-image velocimetry (PIV) experiments 

(Cai et al. 2019, Lagemann et al. 2019, Zhang and Piggot 2020). This emerging body of work 

has shown that deep learning has the potential to match or outperform state-of-the-art classical 

algorithms in terms of efficiency, accuracy, and spatial resolution. Due to the significance of 

PIV experiments, progress in PIV processing approaches, which leverage state-of-the-art ar-

tificial intelligence (AI) tools, impacts a wide range of problems in applied physics and engi-

neering where velocity components of flow fields need to be determined. These methods side-

step the problem of manually designing an analytic pipeline by defining an end-to-end network 

whose output is the dense per-pixel optical flow field. Thus, fine flow structures can be resolved 

which are typically smoothed by traditional cross-correlation based methods due to the inher-

ent spatial averaging. One promising approach is a deep learning based method called RAFT-
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PIV which is inspired by the recently introduced RAFT backbone (Teed and Deng 2020). 

RAFT-PIV is a neural optical flow estimator which is specifically designed for the use case of 

PIV images. It is unique in the sense that it operates entirely on a specific input resolution and 

updates iteratively its flow predictions. In the methodological paper (Lagemann et al. 2021a), 

RAFT-PIV was shown to achieve a new state-of-the-art accuracy on a public PIV database 

and to outperform available supervised and unsupervised learning based approaches by a 

large margin. Its tremendous success based on a superior generalization ability was demon-

strated for a series of different datasets that allow robust conclusions to be drawn on the utility 

of deep learning for PIV analysis (Lagemann et al. 2021b, 2022a, 2022b). However, a general 

lack of confidence in novel deep learning based processing methods still exists within a ma-

jority of the experimental fluids community.  

Hence, this work ultimately has two intertwined goals: (1) to evidence the generalization and 

usefulness of our neural RAFT-PIV approach in challenging real-world applications to enhance 

the general confidence in neural processing approaches amongst practitioners, and, (2) to 

demonstrate the tremendous potential of deep optical flow methods in deriving important tur-

bulence statistics such as stresses and energy spectra - especially in near-wall regions gov-

erned by strong velocity gradients which are typically challenging for cross-correlation based 

approaches.  

To this end, we also present how accurate instantaneous wall-shear stress distributions can 

be derived from such measurements using the linear relationship between inner-scaled veloc-

ity and wall-normal position in the viscous sublayer. This is in contrast to traditional approaches 

like the Clauser chart method (Clauser 1956) or the single-pixel ensemble correlation (West-

erweel 2004) which only provide time-averaged quantities. To summarize, we will take ad-

vantage of the full potential of neural optical flow techniques in PIV applications to demonstrate 

that these methods provide reliable flow field information which will support turbulence re-

search and help to validate large-scale numerical simulations. 

The paper is organized as follows: We first introduce the experimental setup and complemen-

tary direct numerical simulation (DNS) data. Then, we present an extensive body of empirical 

work exploiting the full potential and superior performance of RAFT-PIV in PIV processing. 

Finally, we close with concluding comments. 

 

Experimental setup and benchmark DNS data 

 

The experiments are performed in an Eif-

fel-type wind tunnel at the Institute of Aer-

odynamics at RWTH Aachen University. 

A 9000 mm long inlet section with a trip-

ping device provides a fully developed, 

turbulent channel flow (TCF) in the 2700 

mm long measurement section, which is 

shown in figure 1. It features an aspect ra-

tio of 𝐴𝑅 = 20 with a cross-section of  

100 mm ×  2000 mm (channel half height 

2ℎ × width 𝑤) that ensures a negligible 

influence of three-dimensional effects. 

Comparisons to DNS data (Schäfer et al. 

2011) verify the quality of the provided 

fully developed TCF. For the TCF meas-

urements at a friction Reynolds number of 

𝑅𝑒𝜏 ≈ 1100, the two-dimensional two- Figure 1: Measurement section of the TCF facility 
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component PIV setup is realized with a Darwin Duo 40 laser and a Photron SA3 camera 

equipped with a Tamron 180 mm lens. The input image size of this test case is 

1024 px ×  1024 px and the camera operates at a frame rate of 1000 Hz.  

 

The DNS data used for validating the TCF measurement is provided by the Johns Hopkins 

Turbulence Databases (Li et al. 2008) and is publicly available. In the following, some compu-

tational details of this simulation are provided, but we refer the interested reader to the original 

publication of Graham et al. (2016) for a comprehensive data description. The released DNS 

data contain a turbulent wall-bounded flow with periodic boundary conditions in the longitudinal 

and transverse directions, and no-slip conditions at the top and bottom walls. In this simulation, 

the Navier-Stokes equations are solved using a wall–normal, velocity–vorticity formulation 

(Kim et al. 1987). Solutions of the governing equations are provided using a Fourier-Galerkin 

pseudo-spectral method for the longitudinal and transverse directions and a seventh-order Ba-

sis-splines (B-splines) collocation method in the wall normal direction. The simulation is per-

formed for approximately a single flow through time. The velocity vector and pressure fields 

are stored every five time steps resulting in 4000 data extracts. The computational domain 

measures Lx × Ly × Lz =  8π h ×  2 h ×  3π h. The numerical grid contains Nx ×  Ny × Nz  =

 2048 ×  512 ×  1536 grid points and the numerical time step is Δ𝑡 = 0.0013 in dimensionless 

units. The friction Reynolds number is 𝑅𝑒𝜏 ≈ 1000, i.e., a bit lower than in the experimental 

measurements.  

Apart from validation, the DNS data additionally provide the underlying flow field of synthetic 

particle images. Such synthetic data are necessary to assess the capability of RAFT-PIV in 

accurately predicting instantaneous flow quantities. This property cannot be validated based 

on real experimental data since they do not possess an instantaneous ground truth for com-

parison. To generate synthetic particle images, the velocity fields from those simulations need 

to be transferred onto an equidistant grid as they have a non-equidistant grid spacing in the 

wall-normal direction. The chosen discretization has a spatial resolution of ∆𝑥+ =  ∆𝑦+ = 1 

such that an adequate resolution of the near-wall flow field is provided. These interpolated 

velocity fields are referred to as ground truth data and build the basis for the particle image 

generation using the approach described in Lagemann et al. (2021a). 

 

 

Results 

 

This section is divided into two parts which present results of synthetic and real-world PIV 

measurements of a TCF, respectively. Synthetic PIV images root on snapshots of the DNS 

data and serve the purpose of enabling a direct comparison of the RAFT-PIV output to realistic 

ground truth data relative to both, time-averaged flow quantities and instantaneous results. 

Since no ground truth distributions exist for the experimental data, we compare the time-aver-

aged flow quantities obtained via RAFT-PIV to DNS data and analytic solutions. Under condi-

tions where a standard PIV processing tool, can provide meaningful results, e.g., the wall-

normal velocity profile, we also present the respective data obtained from our in-house PIV 

evaluation tool Pascal-PIV (Marquardt et al. 2019). 

 

Synthetic PIV images 

We start with a comparison of the time-averaged wall-normal velocity profile scaled by inner 

units as shown in figure 2. Both methods, the cross-correlation (Pascal-PIV) and the optical-

flow (RAFT-PIV) based approach, match the trend of the underlying DNS (ground truth) closely 

for y+  >  10. More importantly, however, the figure shows that an established cross-correlation  

Copyright © 2023 and published by German Association for Laser Anemometry 
GALA e.V., Karlsruhe, Germany, ISBN 978-3-9816764-9-5

4 - 3



based technique is not able to re-

solve the transition between the log 

layer and the viscous sublayer for 

this setup since it possesses only a 

single velocity vector in this region. 

In contrast, RAFT-PIV captures the 

distribution within the buffer layer 

and the viscous sublayer remarkably 

well and resolves even the closest 

location to the wall (𝑦+ = 0.5) accu-

rately demonstrating its tremendous 

high-resolution advantage. Pre-

cisely, since RAFT-PIV outputs a ve-

locity vector for each image pixel in-

dividually, the spatial resolution can 

be increased by at least a factor of 

eight which is particularly helpful in 

near-wall regions as indicated in fig-

ure 2.  

This advantage becomes even more prominent when deriving higher-order turbulence statis-

tics such as stresses and energy spectra. A respective side-by-side comparison can be found 

in figures 3 and 4. Similar to the previous finding one can note that both methods, i.e., RAFT-

PIV and Pascal-PIV, match the ground truth well for 𝑦+ > 300. For smaller 𝑦+ values, however, 

the cross-correlation based competitor features partially severe deviations and underestimates 

the normal and shear stresses sub-

stantially. This is a well-known issue 

of traditional PIV methods attributed 

to the spatial averaging/windowing in-

herent to the algorithm itself. That is, 

only one displacement vector can be 

computed per interrogation window 

yielding a smoothed flow field. As a re-

sult, small flow structures are filtered 

out – although sophisticated state-of-

the-art image deformation and predic-

tor/corrector schemes are applied in 

this work. In contrast, results obtained 

by RAFT-PIV match the ground truth 

accurately along the entire wall-nor-

mal direction and even resolve small-

est spatial structures precisely. This 

superior spatial resolution ability is 

also convincingly demonstrated in the 

pre-multiplied energy spectra which 

are shown for two 𝑦+ locations in figure 4. The RAFT-PIV results nicely follow the ground truth 

distribution with only some slight deviation in the smallest wavelength range. Similar to the 

previous findings, a cross-correlation based counterpart can only cover the rough trend of the 

ground truth energy spectrum and substantially underestimates the small wavelength regime.  

Figure 2: Inner-scaled velocity profile 𝒖+ of the synthetic PIV 

images as a function of the wall-normal coordinate 𝒚+. 

Figure 3: Shear stresses scaled by inner units of the 
synthetic TCF PIV images as a function of the 

wall-normal coordinate 𝑦+. 
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Another major advantage of the superior spatial resolution ability of RAFT-PIV manifests in the 

derivation of near-wall flow quantities such as the friction velocity 𝑢𝜏 and the wall-shear stress 

τw, which, in contrast to most of the other experimental techniques, can be derived in an in-

stantaneous and time-averaged fashion over the entire spatial dimension captured in the im-

age without any further assumptions. Given RAFT-PIV results of the present setup, the instan-

taneous wall-shear stress can be calculated from the linear relation between inner-scaled ve-

locity and wall-normal position in the viscous sublayer u+  =  y+ such that τw  =  u η/y, where 

𝑢 denotes the streamwise velocity component, 𝜂  the dynamic viscosity, and 𝑦 the wall-normal 

position in physical units. To increase the accuracy of the wall-shear stress, a wall-shear stress 

value is calculated with each velocity value within the viscous sublayer and subsequently av-

eraged. In this setup, the viscous sublayer is captured by five pixels, i.e., five velocity estimates 

are provided via RAFT-PIV.  Evaluating the synthetic particle images of the TCF with RAFT-

PIV, the temporally and spatially averaged wall-shear stress deviates by only 0.009 % from 

the original ground truth value demonstrating its high level of accuracy. More importantly, how-

ever, RAFT-PIV further provides the possibility to extract the wall-shear stress from instanta-

neous snapshots individually, which - to the best of our knowledge - is hardly possible with any 

other method for such a large region of interest. Figure 5 depicts an example of the instanta-

neous wall-shear stress distribution. RAFT-PIV nicely captures the ground truth distribution 

with very little deviations.  

 

 

Figure 4: Pre-multiplied streamwise energy spectra by inner units of the synthetic PIV images as a 
function of the wavelength 𝜆+ at two wall-normal locations. Left: 𝑦+ = 15, right: 𝑦+ = 150. 

 

Figure 5: Wall-shear stress prediction of an instantaneous image pair of the synthetic PIV images as 
a function of the streamwise coordinate 𝑥+. 
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Experimental measurements 

Next, we demonstrate the superior performance of RAFT-PIV on a set of PIV images acquired 

under real measurement conditions. These potentially include uncertainties such as measure-

ment noise, reflections at the wall, sensor pollution, and/or imperfect estimation of the correct 

Reynolds number and consequently, of the nominal wall-shear stress value, due to an im-

proper calibration or an incorrect 

determination of the exact temper-

ature during the measurements. 

For these conditions, figure 6 de-

picts a time-averaged velocity pro-

file obtained by RAFT-PIV in com-

parison to the cross-correlation 

based counterpart and comple-

mentary DNS data. RAFT-PIV and 

Pascal-PIV match the DNS data 

for moderate and large wall dis-

tances 𝑦+ > 10. In the near-wall 

region (𝑦+ < 10), however, exclu-

sively RAFT-PIV estimates pre-

cise velocity values. Naturally, 

slight deviations due to measure-

ment uncertainties occur in the 

viscous sublayer but the superior 

spatial resolution ability of the deep optical flow network facilitates velocity predictions in re-

gions which could not be resolved thus far. In this context, please note that these measure-

ments are not fine-tuned to investigate near-wall flow regions like the buffer and the viscous 

sublayer but the complete channel half height. As a consequence, the viscous sublayer is only 

captured by three pixels while displacement prediction is impeded due to inhomogeneous par-

ticle distributions. Considering these fundamental challenges, the results depicted in figure 6 

become even more remarkable and evidence the noteworthy generalization ability and robust-

ness of RAFT-PIV.  

In line with the previous section pre-

senting stress profiles of synthetic 

PIV images, figure 7 shows shear 

and normal stresses of the experi-

mental data. A close-up of the inner 

layer is given to highlight that an es-

tablished cross-correlation based 

method matches the complemen-

tary DNS data distribution well only 

for 𝑦+ > 100. Substantial deviation 

occurs in the near-wall region, es-

pecially for the streamwise velocity 

component. In contrast, our deep 

optical flow predictor closely follows 

the DNS curve. More importantly, 

this holds for regions which are not 

resolved by standard PIV methods 

such as the inner peak in the 

streamwise stresses. 

Figure 6: Inner-scaled velocity profile 𝒖+ of the experimental 

PIV images as a function of the wall-normal coordinate 𝒚+. 

Figure 7: Shear and normal stresses in inner units of the  
experimental PIV images as a function of the 

wall-normal coordinate 𝑦+. 
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Finally, we compute the instantaneous 

and time-averaged wall-shear stress 

distributions for the experimental data. 

In this setup, the viscous sublayer is 

captured by three pixels, i.e., three ve-

locity estimates are provided via RAFT-

PIV. Averaging the resulting wall-shear 

stress values in the streamwise direc-

tion and over time yields 𝜏𝑤 = 0.135 Pa. 

The theoretical value for this flow based 

on analytical calculation (Pope 2000) 

measures 𝜏𝑤 = 0.127 Pa. Hence, the 

experimentally obtained value deviates 

by about 6.2 % - most likely due to 

measurement uncertainties such as im-

perfect inflow conditions and slightly de-

viating fluid properties. Figure 8 depicts 

the derived wall-shear stress distribution of an instantaneous snapshot. Although no ground 

truth is available for comparison, the general trend resides in the same magnitude range as 

the complementary DNS and closely matches the standard deviation of the wall-shear stress 

values. Considering all previous results, we therefore conclude that also the instantaneous 

wall-shear stress predictions are reliable. 

 

 

 

Conclusion 

 

The present investigation leverages the full potential of deep learning based optical flow tech-

niques for PIV applications. We highlight that our deep-learning based approach RAFT-PIV 

enables an accurate computation of relevant flow quantities such as shear stresses and energy 

spectra from velocity predictions in regions where established methods typically fail due to 

unresolved scales and strong velocity gradients. Moreover, it is shown how the spatially de-

veloping wall-shear stress distribution is obtained solely based on wall-normal particle images. 

Since RAFT-PIV does not rely on averaged displacement vectors within finite-size interroga-

tion windows like traditional PIV evaluation tools, it provides a velocity vector for each pixel. 

Thus, several data points within the viscous sublayer can easily be obtained from a high-res-

olution PIV measurement and the linear relationship between the inner-scaled velocity and the 

wall-normal position can be used to calculate the instantaneous wall-shear stress. The evalu-

ation of synthetic and experimental particle images of a TCF at 𝑅𝑒𝜏 ≈ 1100 convincingly 

demonstrates the validity of the resulting instantaneous and time-averaged wall-shear stress 

distributions.  

Considering these aspects, we strongly believe that deep optical flow methods such as RAFT-

PIV constitute a major step for the majority of PIV measurements and facilitate numerous novel 

analysis possibilities of existing datasets, especially in regions which are usually not resolved 

by cross-correlation based counterparts such as the viscous sublayer and the lower buffer 

layer in turbulent wall-bounded flows.   

 

Figure 8: Wall-shear stress prediction of an instanta-
neous image pair of the experimental PIV images as 

a function of the streamwise coordinate 𝑥+. 
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