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Abstract  
  
Machine learning (ML) approach has been successfully applied for accelerating filtered 
Rayleigh scattering (FRS) measurement data analysis at the two levels of evaluation. 
Calibrated with the help of experimental data ML approximation of the Rayleigh-Brillouin 
scattering (RBS) profile establishes a stable, accurate, and fast model for the description of 
the RBS profile. Application of the ML approach directly for FRS intensity spectra 
approximation together with good accuracy provides a 200-fold acceleration of the data 
evaluation. ML models have been tested by simulated and experimental data and are 
incorporated into the software. 
  
Introduction  
  
A main issue of data processing of filtered Rayleigh scattering (FRS) measurements is the 
correct numerical description of the Rayleigh-Brillouin scattering (RBS) profile. Commonly 
used physics-based models, such as the Tenti S6 (Tenti et al. 2011) and the Pan S7 (Pan et 
al. 2004), although proved to be exact, are computationally time-consuming. In space-resolved 
FRS measurements, processing of data collected by hundreds of thousands of camera pixels 
becomes a significant computational task. Analytical approximations of the established 
numerical models could overcome that drawback. However, existing analytical approximations 
(Witschas 2011), (Ma et al. 2012), (Binietoglou et al. 2016), (Doll et al. 2016) are not stable 
enough or do not adequately describe the Rayleigh scattering profile in wider gas flow regimes. 
 
To accelerate FRS data processing, we have resorted in the current project to the machine 
learning (ML) approach, a powerful computational technique, which becomes nowadays an 
efficient and widespread working tool, due to highly developed algorithms and a range of 
available software. ML performs fast approximations of the established models of the RBS 
profile based on numerical regularities of data, without any knowledge of the physics behind 
the data. The striking advantage of the ML approach is that the predictive function can be 
quickly recalculated for another model, input parameter set, or parameter range.  
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We have applied the ML approach at two levels of FRS data evaluation. At first, the ML 
approximation have been used for the description of the RBS profile. It establishes a fast, 
stable, and accurate method for the data evaluation. In the second stage, in the spirit of the 
ML approach, we apply the technique directly to data measured in the experiment, in other 
words, to FRS intensity spectra. It leads to a drastic increase in processing speed, due to 
omitting the calculation of the RBS profile and its convolution with the molecular filter 
transmission curve. 
  
Computational details  
  
To create ML prediction functions, one needs to perform a teaching procedure, which relates 
input model parameters with a set of output profiles, the so-called training set. In our case, it 
is a set of Rayleigh scattering profiles or a collection of FRS intensity spectra, corresponding 
to all parameter variations expected in forthcoming measurements. These curves can be either 
generated numerically with one of the established models or obtained directly from an 
experiment. All preparative calculations, including the generation of the training set and the 
teaching procedure, can be done within minutes. Mathematically speaking, the prepared ML 
predictive model is a following gaussian  
  

𝑍𝑍(𝛷𝛷) =  𝛽𝛽0 +  𝛽𝛽 ∗  𝑒𝑒(−‖𝑍𝑍−𝛷𝛷‖2), 
  
where Φ is an input parameter set, and Z is an approximation output for a predefined set of 
definition points, which are, for instance, excitation frequencies in an FRS intensity spectrum. 
ML algorithms calculate the predictive set - matrixes β0, β, and Σ. Dimensions of these matrixes 
are defined by the sizes of the input parameter set, definition points set, and intrinsic 
parameters of the ML teaching algorithm. Our models are realized in the Python programming 
language. The core functions of our models are taken from the scikit-learn software package 
(Pedregosa et al. 2011). Additionally, we use also programming scripts proposed by Hunt G.J. 
(Hunt et al. 2020).  
  
The ML model for approximation of the RBS spectrum  
  
Firstly, the ML approach has been used to approximate the Tenti model. The corresponding 
training set was calculated for the following input parameter domains: Y ∈ [ 0.55 – 3.8], the 
internal relation number - [1.5; 3], and the Eucken factor - [1.8; 2.1]. Other two parameters of 
Tenti’s model, namely the internal specific heat and the translational specific heat, were 
considered here as constants. Fig. 1 presents the training set (left panel) and the high quality 
of the ML approximation (mlRBS) for a case of the kinetic regime of measured gases (right 
panel). It is to be noted that residuals of approximation do not exceed a value of 0.5% within 
the whole input parameter domain. Replacing the Tenti model with the ML approximation in the 
data evaluation procedure leads to a reduction of the evaluation time by a factor of 20. The 
high accuracy of the ML approximation is implied as the difference between evaluation results 
obtained with the conventional method and the ML one, which does not exceed 0.15 K, 100 
Pa, and 0.15 m/s in temperature, pressure, and flow velocity, correspondingly. That is 
significantly less than the current uncertainties of FRS measurements (Doll et al. 2022). The 
obtained in such a way ML model of the RBS profile has been calibrated. The matrix of 
coefficients β0 from the above-described formula was varied to fit reference experimental data. 
Then the calibrated ML model has been successfully used by (Doll et al. 2023) for data 
evaluation. Since the RBS profile does not depend on measurement conditions, the predictive 
set for the ML model can be calculated in advance. In this form, the ML model, called 
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mlRBS_cal, has been incorporated into the developed software as an optional stable model 
for the description of the RBS profile.  
 

 
Figure 1. Left panel: the training set for the mlRBS model, for the sake of clarity only each 20th 

curve is presented; right panel: quality of the ML approximation of the RBS profile.  
 
The ML approximation of FRS intensity spectra  
  
An application of the ML approach directly for the approximation of FRS intensity spectra, 
called within the project the mlFRS model, provides a tremendous acceleration of the data 
evaluation, although requires some tuning. A blunt increase in the training set size is not a 
panacea for getting better results. Overfitting is a known issue in applications of ML algorithms. 
It has been found for four input parameters of the mlFRS model, namely pressure, 
temperature, the Doppler shift, and the scattering angle, the most preferable numbers of 
gradations, which results in 625 curves for the whole training set. 
 
Input parameters of the training set generator for the model are expressed by large numbers 
in kPa, MHz, and hundreds of Kelvins. However, the ML algorithms demonstrate better 
performance working with input parameters that are distributed within an interval from -1 to 1, 
or close to that. To satisfy that condition input parameters of the model have been centralized 
and normalized. In other words, firstly a constant C is subtracted from a parameter value, then 
the resulting amount is divided by a constant N. The quality of the approximation is very 
sensitive to a choice of that constants. We have performed a systematic search for the best 
selection of the constants for pressure, temperature, and Doppler shift. The scattering angle 
was found to be better left intact.  
  
Relatively small changes in the scattering angle heavily affect the form of FRS intensity 
spectra. It makes it difficult for the ML algorithms to combine in one model intensity spectra 
originating from scattering angles ranging in radians from 0.55 to 2.2. This difficulty manifests 
itself through low-quality predictions. To minimize the problem, we have narrowed the interval 
of the scattering angle for the training set. It means in practice, that the training set is calculated 
separately for each camera position. That modification requires additionally a one-minute 
calculation per camera during the preparation phase and almost does not increase the time 
required for data evaluation in the operational phase.  
  
The training set for the mlFRS model can be obtained from preliminary test measurements or 
calculated as a convolution of the RBS profile with the iodine filter transmission curve for the 
excitation frequencies sequence. In the current project, we tested two variants of the mlFRS 
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training sets. The first variant was prepared with the help of the Tenti model and the second 
one with the mlRBS_cal model. The training set of the mlFRS model, calculated with the help 
of the Tenti model for the following parameter domains for pressure - [ 0.82e5 - 1.18 e5] Pa; 
temperature - [268-350] K, the Doppler shift - [0 - 300] MHz, and the scattering angle – [0.6- 
2.2], is presented in Fig. 2 (left). The quality of the mlFRS approximation, although not as 
perfect as in the previous mlRBS case, proved to be good, with an average deviation from the 
original spectrum of less than 1%. An example of the mlFRS approximation for a case of 
ambient conditions, the Doppler shift of 100 MHz, and the scattering angle of 1.27 is displayed 
in Fig. 2 (right).  
 
The accuracy of the mlFRS model has been tested using both simulated and experimental 
data (Doll et al. 2017). The simulated data gives a possibility to test a large range of parameter 
combinations, while analysis of the real data, although not with such a broad parameter variety, 
strengthens the system validation. Approximation accuracy for two data types and two training 
sets proved to be similar. Maximal differences observed in testing runs between data 
evaluation results obtained with the mlFRS and the conventional methods are 600 Pa, 1.2 K, 
and 3.5 m/s for pressure, temperature, and velocity components, respectively. 
 

  
Figure 2. Left panel: the training set for the mlFRS model, for the sake of clarity only each 20th 

curve is displayed; right panel: quality of the ML approximation of the FRS spectrum. 
 
Conclusive remarks  
  
The ML approach has been applied for FRS measurement data analysis at two levels of the 
evaluation. The ML model of the RBS profile calibrated with experimental data provides a fast 
stable and accurate calculation method. In a fully applicable state, it is included in the 
developed software as an optional method for the description of the RBS profile. Application of 
the ML method directly at the level of the FRS intensity spectra brings in comparison to 
conventional methods at least a 200-fold decrease in computational time required for the 
evaluation. It comes together with good accuracy. Further optimization is possible in the way 
of a better choice for centralization and normalization constants. Presented ML methods of 
accelerated data evaluation contribute to the promotion of FRS measurements towards a real-
time application.  
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