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Abstract  

The application of machine learning provides many opportunities due to its substantial ad-
vantage in dealing with large data sets [Pandey et al. 2020]. It is of particular interest for the 
prediction of turbulent flows. Within this context, echo state networks as a type of machine 
learning algorithms with recurrent networks, are very efficient in predicting the temporal be-
havior of dynamic systems after a supervised learning process. In this regard, the von Ká-
rmán vortex street is a suitable candidate for training and testing the echo state network prior 
to its application to more chaotic turbulent fields due to its thoroughly investigated flow field 
and semi two-dimensionality for low Reynolds numbers. Therefore, we implement echo state 
networks for the prediction of the velocity fields in a von Kármán vortex street using Particle 
Image Velocimetry (PIV) data. The data is reduced by Proper Orthogonal Decomposition 
(POD), and the flow is reconstructed by the first hundred most energetic modes. Then, an 
echo state network with 3000 neurons is trained for 700 time steps, and optimized for its 
main hyperparameters to reach maximal performance. The predictions are selected based 
on their capabilities of predicting the vertical velocity direction. The optimized set is capable 
of predicting the flow qualitatively in terms of upward and downward passing streams but 
fails for their magnitude estimation. Therefore, further investigations are required from quanti-
tative point of view. 

Introduction  

Machine Learning (ML) algorithms can be used for the prediction of complex systems like 
turbulent flows [Pandey et al. 2020]. These algorithms are in particular very efficient in deal-
ing with large data sets in terms of computation cost and time. On the other hand, large vol-
umes of experimental and numerical data are becoming an inseparable part of fluid dynamic 
studies. Meanwhile, the continuous advances in computer capabilities make ML implementa-
tions cheaper and more convenient. Thus, ML applications in fluid dynamics have gained 
significant attention in recent years. Turbulent flow prediction is one of the main aspirations 
of fluid dynamics, where ML application show promising advantages by understanding the 
flow physics and statistical and geometrical patterns of turbulence.  

On this subject, the prediction of von Kármán Vortex Street (KVS), as the vortex shedding in 
the flow passing a cylinder, can be a suitable case study. KVS is a well-known example of a 
turbulent flow, with a thoroughly studied semi-two-dimensional flow field for low Reynolds 
numbers. The shedding process starts at Re ≈ 90. The vortex shedding frequency, repre-
sented by the Strouhal number (St), rises as Re increases. Then, for 400<Re<6000, the St 
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has a constant value of about 0.22 [Lienhard 1966]. Recently, several attempts were made to 
control or predict the KVS by ML implementations. Rabault et al. [Rabault et al. 2018] 
achieved active flow control over KVS by Deep Reinforcement Learning (DRL). They mini-
mized the drag through reduction of vortex shedding strength at Re = 100. Schena [Schena 
2021] compared two ML techniques, DRL and Bayesian Optimization, for flow control of KVS 
at Re=100. Morast [Morast 2019] implemented deep learning to identify the Reynolds num-
ber and the location of the cylinder in KVS. Moreover, Arntzen [Arntzen 2019] used ML for 
velocity field prediction in KVS at 2500<Re<6000. He used sparse-dynamic-mode-
decomposition scaling relations of the velocity field instead of POD-Interpolation approach, 
which resulted in predictions with less error. 

A class of ML approaches for the prediction of complex systems are RNN. These networks 
have recurrent connections between their nodes, which allows them to remember the past 
and influence the future. Thus, they are very suitable for learning from time series and exhibit 
temporal behaviors. Echo State Networks (ESN) as a subtype of RNN consists of a reservoir 
with fixed recurrent connections that receives the input, then only the readout matrix of neu-
ron states are trained to reach the best output with minimum error. A schematic sketch of 
such an architecture is shown in Figure 1. ESNs can describe the evolution of dynamic sys-
tems without solving the underlying equations. Thus, they are of particular interest for dy-
namic flow prediction and were already successfully applied to two-dimensional moist Ray-
leigh-Bénard convection [Heyder et al. 2021]. 

In this study, we aim at the prediction of the velocity field of KVS by an ESN implementation. 
First, experimental data of KVS flow fields is obtained by PIV measurements. Then, the data 
was reduced by POD. The first hundred most energetic modes in terms of kinetic energy of 
POD  were considered for supervised learning of the ESN. However, it may also be better to 
calculate the POD modes by the vorticity fields. Thus, they are optimal in terms of entropy, 
which was shown to be beneficial by Kostas et al. [Kostas et al. 2005] and later also Cierpka 
et al. [Cierpka et al. 2010] for momentum transfer. Finally, we optimized the hyperparameters 
of the ESN to reach the best possible prediction. 

 

 
Fig. 1: A schematic sketch of an Echo State Network (ESN). 
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Methods  
 
PIV measurements of the flow around a cylinder (diameter = 8 mm) were performed in a wa-
ter channel with a cross section of 50 × 50 mm2. The flow was seeded by Polyamide parti-
cles with a diameter of 20 µm. A camera (HS 4M by LaVision GmbH) was used to capture 
the images of the flow field illuminated by a continuous wave laser. The Reynolds number 
based on the cylinder diameter was 900. For the PIV measurements five different recording 
frequencies (F) of 400, 100, 50, 25, and 12.5 Hz for a measurement time of 25, 50, 100, 200, 
and 400 seconds respectively were used. For a St of 0.22 this results to 83, 165, 330, 660 
vortex shedding events and a temporal resolution, t/tcharacteristic, of 120, 30, 15, 7.5, 3 time 
steps per vortex shedding event, respectively. This ensures the possibility of training and 
testing the algorithms with different temporal resolutions and time spans. The experimental 
setup and the average velocity magnitude field are shown in Figures 2 and 3, respectively. 
The flow is illuminated by a laser sheet parallel to the side walls of the channel, and the im-
ages are captured by a camera located outside the water channel perpendicular to the laser 
sheet. In the averaged velocity field the symmetric wake after the cylinder is the footprint of 
vortex shedding while also the growing boundary layers near the walls are apparent. 
 

  
                         
           Fig. 2: Experimental Setup.                                Fig. 3: Average flow field for 50 Hz. 
 
In this study, an ESN was implemented to predict the flow. The weight matrix of its recurrent 
connections (W) and the input weights (Win) were selected randomly at the beginning. Figure 
1 is a schematic sketch of an ESN with its corresponding W and Win as the blue and green 
vectors. Then the output weights (Wout) were optimized during a supervised learning process 
by feeding training data to the system. Finally, this trained reservoir predicted the flow.  
 
ESNs are fed by an input signal u(n) ∈ RNu  corresponding to a desired target output signal 
ytarget(n) for some discrete time steps n=1, …, T. Then the reservoir predicts an output y(n)∈ 
RNy and tries to minimize an error E(y,ytarget) in this case the Root-Mean-Square Error 
(RMSE):  
 

                           𝐸 𝑦, 𝑦 ∑ ∑ 𝑦 𝑛 𝑦 𝑛                           1  

 
The neurons are updated by Equations 2 and 3. α is the leaking rate and describes some 
kind of blending between the old state x and its update x̃. The output signals are collected in 
a linear readout layer by a Wout readout weight matrix. As mentioned before, W and Win are 
preselected randomly while Wout is chosen by Equation 5. 
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                       𝑊 𝑎𝑟𝑔 𝑚𝑖𝑛
1
𝑁

𝑦 𝑛 𝑦 𝑛 𝛽‖𝑤 ‖                   5    

The reservoir is defined by (Win, W, α), and the variables that can control these three are 
called hyperparameters, Three of them have higher importance according to the literature 
[Lukoševičius 2012], input scaling, leaking rate, and spectral radius. The input scaling is the 
domain in which the input weights are collected. These can be uniformly or independently set 
for input signals. The input scale regulates the amount of the nonlinearity of the reservoir 
plus the relative weight of current input against the history. The leaking rate represents the 
speed of reservoir update. Therefore, the flow dynamics play a central role in determining the 
most efficient leaking rate. Finally, the spectral radius is the maximal Eigenvalue of the W. 
The spectral radius should remain below one to ensure echo state properties in most situa-
tions. For this study, the ESN model was created in Python using the easyesn library for 
3000 neurons. Where each neuron is sparsely connected to 20 percent of others. Then it is 
trained and tested for 700 time steps with different sets of hyperparameters to reach the 
maximum efficiency. 
 
Results  
 
In Figure 4 the vertical velocity field (right) and the magnitude of the velocity field (left) are 
shown for a randomly chosen time step. There is a stationary region behind the cylinder fol-
lowed by upward and downward directed fluid as expected for vortex shedding. Figure 3 dis-
plays the average flow field. The typical cone-like shape and boundary layers on the top and 
bottom wall with increasing thickness further downstream are apparent. It should be noted 
that the PIV results possess good quality in terms of the fraction of outlier vectors which 
stands below 1% for the normalized median test. Figure 5 shows a sample vector field of PIV 
measurement, where a low fraction of the outliers is evident. A standard correlation was ap-
plied for PIV processing for an initial rectangular interrogation window size of 64×64 with 
50% overlap and a final circular window size of 16×16 with 50% overlap. The weights of ini-
tial and final interrogation windows were one and three, respectively. The final spatial resolu-
tion was 0.35×0.35 mm2 in physical coordinates with 141×211 vectors. The velocities were 
calibrated with respect to the channel height with a final magnification magnitude of 22.7 
px/mm. Further increase of spatial resolution was neglected due to the increased volume of 
data, which is not necessary for this study. 
 

 
Fig. 4: Sample total (left) and vertical (right) velocity fields of PIV measurements. 
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Fig. 5: A sample vector field of PIV measurement. 

 
In order to reduce the parameter space for the networks, POD analysis was applied to the 
results to derive the most dominant spatial modes and their temporal coefficients in the flow 
field [Pandey et al. 2020, Heyder et al. 2021]. Figure 6 displays the kinetic energies of POD 
modes as a fraction of the total kinetic energy of the flow for F = 50 Hz. Two main modes 
with 15 % of total energy are evident in Figure 6, whereas the energies of the next modes 
drop significantly. Figure 7 shows the vertical velocity fields of the first four modes. Vertical 
velocities are of particular importance due to their implementation for prediction quality anal-
ysis that will be explained later. For a better understanding of the dynamic behavior of the 
modes, Figure 8 shows the coefficients of the first four modes of the POD analysis for 50 Hz 
frequency. The alternation of modes one and two represent the vortex shedding as expected 
and has a typical frequency of 3.3 Hz which results in a Strouhal number of 0.22. However, 
the spatial domains of the temporal coefficients of these two main modes are varying. Figure 
9 shows this variation for mode one, which has also a periodic pattern itself. Smaller features 
are represented by the higher modes, where their temporal coefficients show evolutions that 
are more complex. For ML application, we consider only the first hundred modes with 73 % 
of total kinetic energy, and used these hundred modes for flow reconstruction and prediction. 
The corresponding reconstructed and residual fields are shown in Figure 10. The recon-
structed flow field preserves the main features of the flow despite losing some of its energy to 
the residual flow. The best data set in terms of frequency for ML implementation is the one 
with sufficient temporal resolution while covering a relatively long time as well. F= 50 Hz is 
the best data set from this point of view. Later, other frequencies will also be used and inves-
tigated. 
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Fig. 6: Energies of eigen modes for 50 Hz. 

 

 
Fig. 7: Vertical velocities of modes 1, 2, 3, and 4 for 50 Hz. 

 

 
Fig. 8: Temporal coefficient values of modes 1, 2, 3, and 4 for 50 Hz. 

 

 
Fig. 9: Temporal coefficient values of mode one for 50 Hz. 
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Fig. 10: Velocity field of the reconstructed flow by first hundred modes (left), and the corresponding 

residual field (right). 
 
Prediction evaluation is necessary for ESN optimization. One of the typical parameters for 
this is Mean Square Error (MSE) of all individual velocity components. However, MSE favors 
predictions closer to the average flow. Figure 11 shows a sample velocity field with two pre-
dictions, a and b along with the corresponding experimental flow field indicated as c. Case a 
is very similar to the average field without any vortex shedding and related upward and 
downward flow, whereas case b is closer to the reality with distinguishable vortical features. 
Therefore, whatever the prediction evaluation parameter is, it should favor case b over a. 
However, the MSE value for case a is 582 mm2/s2 and for case b is 1023 mm2/s2. Therefore, 
MSE is not an ideal parameter as it always favors the predictions closer to the average flow 
regardless of preserving vortical structures at their correct positions. After a thorough investi-
gation, which will be presented elsewhere, we decided to use the Vertical Velocities Predic-
tion of Direction (VVPD) as a parameter for prediction evaluation. VVPD is defined as the 
ratio of correct prediction of vertical velocities in real flow with │Vy│>17.6 mm/s in terms of 
their positive or negative direction. 17.6 mm/s is equal to one pixel displacement in the PIV 
images, and the reason for defining it as a threshold is to neglect the displacements below 
one pixel, which are dominant outside the vortices. Higher VVPD values indicate better pre-
diction of upward and downward flows. However, this parameter does not deal with the pre-
diction of vertical velocity magnitudes. 
 

 
 
Fig. 11: Sample velocity fields of two predictions (a) and (b), and the corresponding measured velocity 

field (c). 
 
Next, the hyperparameters of the ESN are optimized to reach the best prediction. For this, 
input scaling, spectral radius, and leaking rate are chosen as the three major hyperparame-
ters with most influence. Figure 12 demonstrates the VVPD values versus these hyperpa-
rameters. On the left side, input scaling is changed from 0.1 to 20 for three different leaking 
rates = 0.8, 0.9, 0.95, while the spectral radius is fixed to 0.95. Here, VVPD values are in-
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creasing substantially as the input scaling increases. They reach two peaks at input scaling = 
3 and 5 and decrease afterward for all three different leaking rate values. However, maximal 
performance is in leaking rate = 0.95, which means a very low weight of past states in the 
prediction of next states. In the middle of Figure 12, the VVPD variations with respect to 
spectral radius are plotted for input scaling = 3, 5, and 7 and leaking rate = 0.95. The results 
show that as the input scaling increases, VVPD decreases and reaches its minimum values 
around 0.8-0.9. Then a sharp rise in VVPD is followed with its maximal value for spectral 
radius = 0.97 in input scaling = 3. Finally, in the right side of Figure 12 for input scaling = 3, 
leaking rate is varied from 0.05 to 0.99 for spectral radius = 0.5, 0.95, 0.97. Generally, VVPD 
rises with the increase of leaking rate, and the best performance is for leaking rate = 0.95 
and spectral radius = 0.97. Therefore, the optimized set of hyperparameters is one with leak-
ing rate = 0.95, spectral radius = 0.97 and input scaling = 3 to achieve the best performance. 
In order to have a deeper understanding of the performance of the optimized case, the VVPD 
values of this prediction and another case with similar spectral radius and input scaling but 
leaking rate = 0.05 are shown in Figure 13 for comparison. The overall VVPD values of the 
optimized case stand above 0.5 and even reaches 0.85. However, for the latter case, the 
VVPD values decrease significantly and remain below 0.2. Due to the phase shift in the pre-
dictions for some time steps, there are also below 0.5 VVPDs for the optimized case, which 
have semi-periodic nature. So, one can say that these are for times where prediction is 
ahead or behind the measurements. The vertical velocity fields of optimized prediction and 
measurements are shown in Figure 14 for time step = 25 and 400. Overall, for both cases 
very good predictions of vertical velocity directions are achieved. However, the magnitudes 
of predicted values are higher compared to reality. 
 
 

 
 
Fig. 12: VVPD (vertical velocities prediction of direction) values with respect to variations in input scal-

ing (left), spectral radius (middle), and leaking rate (right). 
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Fig. 13: VVPD values for the optimized set (green) and another set of hyperparameters (red). 

 

 
Fig. 14: The vertical velocity fields of optimized prediction and reality for t = 25 (left) and 400 (right). 

 
 

Conclusions  
 
This study focused on flow prediction of von Kármán vortex street by machine learning appli-
cation. Particle image velocimetry of the flow around a cylinder was carried out in a water 
channel for Re = 900 and recording frequencies of 400, 100, 50, 25, and 12.5 Hz resulting in 
a wide variety of different temporal resolutions of the applied data. POD analysis was applied 
to the experimental results for data reduction, and flow was cut out for the first hundred 
modes with the highest energies. Then, an echo state network model with 3000 neurons was 
fed by the data with 50 Hz frequency for 700 training time steps. Finally, the echo state net-
work was optimized with respect to its three most influential hyperparameters: leaking rate, 
input scaling, and spectral radius. The vertical velocity direction prediction was preferred as 
the selection parameter for the network optimization. The optimization resulted in input scal-
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ing = 3, spectral radius = 0.97, and leaking rate = 0.95. Qualitatively, the optimized set pre-
dicted the flow well. Meaning that it could imitate the vortex shedding process in the flow for 
the entire testing process of 700 time steps. However, from a quantitative point of view the 
predictions are not satisfactory. Thus, further investigations are planned for the optimization 
of other hyperparameters to enhance the predictions. Meanwhile, more efficient prediction 
selection parameters should be defined for flow assessment. Later, the influence of data fre-
quency and training length will be investigated as well, and we will try to apply the optimized 
echo state model to different flow fields other than the von Kármán vortex street.   
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