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Abstract 

 

Inertial modes are Coriolis-restored linear wave modes that 
arise in rapidly rotating fluids. Recent experimental works 
showed that inertial modes exist in differentially rotating 
spherical gap flows [1,2]. It is an open issue why only a few 
modes develop and how they get enhanced. 
We present a study of inertial modes in the Cottbus' spheri-
cal gap apparatus (Fig. 1), where the inner sphere is slow-
er- or counter-rotating with respect to the outer shell. The 
Rossby number outoutinRo  /)( , with in  and out  
the inner and outer sphere rotation rate, characterizes the 
flow. We use a simple Particle-Image-Velocimetry (PIV) 
system in the rotating frame of the outer shell to visualize 
the flow in the gap [3]. Since most of the previous spherical 
shell experiments are without optical access, our method gives us new qualitative and quan-
titative insights into the flow between concentric spheres. With that we are able to show for 
the first time quantitative horizontal velocity fields of the inertial modes in a differentially rotat-
ing spherical gap experiment. We compare the uniquely identified modes with the literature 
[1,2] and, moreover, we confirm that the experimentally obtained modes are indeed similar to 
their analytic full-sphere counterparts derived by Zhang et al. 2001 [4]. 
 

Introduction 
 

Spherical gap flows are omnipresent in nature. The atmosphere and the ocean form very thin 
spherical gaps, whereas the Earth’s solid iron inner core and the lower mantle form a thick 

spherical gap where the molten metal of the liquid outer core represents the fluid in between. 
A characteristic feature of spherical gaps is that the inner sphere and the outer shell can ro-
tate at different speeds, i.e. differential rotation, or nominally the spherical Couette flow. This 
strongly effects the liquid interior. Therefore, spherical gap flow models and laboratory exper-
iments are often used to understand dynamics and mechanisms in planets and stars, as well 
as ocean and atmosphere. 
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Common features in rapidly rotating systems, i.e. when the rotation dominates the viscosity, 
are inertial waves which are Coriolis-restored internal oscillations. If no boundaries are con-
sidered, inertial waves exist at any frequency   in the interval out 20  , where out  is 
the rotation speed of the outer shell. The frequency of a plane inertial wave is given by the 
dispersion relationship 
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where ),,( mlkk  is the wave vector and   is the angle between the horizontal plane and 
the group velocity kcg  / , showing the direction of energy propagation. From (1), it is 
obvious that the frequency of inertial waves does not depend on the magnitude of the wave 
vector but only on its direction. This means that for low frequencies the inertial wave shear 
layers are parallel to the rotation axis and for high frequencies perpendicular to it. 
 
One striking property of plane inertial waves, which they share also with internal gravity 
waves, is their reflection behavior at solid boundaries. If an incident wave ray hits a sloping 
boundary, it will be reflected in the same angle with respect to the rotation axis. This can lead 
to energy focusing and eventually to attractors or closed orbits [3]. 
 
The Poincaré equation for inertial waves is hyperbolic which does not comply with the 
boundary conditions. The problem becomes mathematically ill-posed and, for an inviscid flu-
id, solutions are generally singular. An exception has been found by Zhang et al. 2001 for full 
sphere geometry [4].  
 
In contrast to full sphere geometry, in spherical gap geometry no analytic solution for inertial 
modes could be found in spite of the similarity between both geometries. Rieutord et al. 2012 
[2] postulate that most of the fluid volume in a spherical gap (~85% with 3/1/  outin rr ) 
lies outside the tangent cylinder (vertical shear layer touching the inner spheres equator [5]) 
and is in solid-body rotation with the outer shell out . Due to this fact, they conclude that 
there might be a structural similarity between the full-sphere [4] and the spherical-gap inertial 
modes. To this day, there was no quantitative confirmation of the structural similarity in la-
boratory experiments. 
 
Our experiments reveal a number of distinct inertial modes excited by differential rotation. 
We will not focus on the excitation mechanism itself (for this purpose see [1,2]). We rather 
use the decisive advantage of a full optical access, and a visualization of the horizontal plane 
up to 40%, to compare the velocity fields of distinct inertial modes with the velocity fields of 
the analytic full-sphere modes [4] and, moreover, to confirm that, indeed, most of the fluid 
volume outside the tangent cylinder rotates with out . 
 
Experimental set-up 
 
The experimental apparatus (Fig. 1) consists of two independently rotating concentric 
spheres with an inner sphere radius of 40inr mm and an outer radius of 120outr mm. 

From this follows a gap width of 80d mm and a radius ratio of 3/1/  outin rr . The inner 
sphere is made of black anodized aluminum, suspended on a shaft of diameter 14 mm to 
ensure an axisymmetric rotation. The outer shell is made of acrylic glass. The working fluid is 
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a silicone oil of viscosity )07.065.0(  mm2/s. To avoid optical distortions due to the cur-
vature of the outer shell, the entire shell is immersed into a cubic tank of de-ionized water. If 
we use outoutin r)(   as velocity scale, the characteristic Rossby number is defined by 

outoutinRo  /)( . Further, the Ekman number 6108.6)/(  outoutrE   character-
izes the ratio between viscosity and Coriolis forces. More information about the apparatus 
can be found in [3,6]. 
 
For visualization in the meridional plane, the flow was seeded by Kalliroscope tracer particles 
and illuminated using a vertical laser light sheet technique (Fig. 2a). Because of their plate-
like shape, the particles are aligned with the shear flow showing bright and dark portions of 
reflection. A camera recorded the flow in the laboratory frame perpendicular to the laser 
sheet. The flow in the horizontal plane has been studied quantitatively with particle image 
velocimetry (PIV) with spherical hollow glass spheres as tracer particles (Fig. 2b). Two 
GoPro Hero 4 cameras immersed in the water as well, offering a cheap alternative to enable 
high-resolution recordings, observed the particle motion in the frame at rest with the outer 
shell. With this setup, up to 40% of the horizontal plane can be observed. 
 
The calibration of the PIV setup is rather complicated since we have a complex and closed 
system and cannot directly calibrate during the measurements. The setup in Fig. 2c shows a 
proper alternative for the calibration of the PIV. For the respective measurement height, a 
black circle area with markers, representing the world coordinates with known distances, has 
been fixed at the bottom of the aquarium. The Camera was fixed from above with the optical 
path perpendicular to the object, in the same distance as in the real experiments. Then, we 
filled the aquarium with water until the lens of the camera immersed into the water. The cam-
era has been adjusted until we observe the same situation like in the real experiments. The 
obtained image of the world coordinates represents the input file for the Matlab toolbox 
matPIV v.1.6.1 [7] to transform the pixel coordinates of the recorded image to the real Carte-
sian coordinates. We validated this transformation with measurements of solid-body rotation 
from which we know the corresponding analytical velocity field. The errors in the center of the 
field of view are between 8% to 15%, and around 20% to 25% in the corners and edges.  
 

 
Fig. 2: a) Setup for measurements in the meridional plane. b) Setup for measurements in the horizon-

tal plane. c) Setup of the calibration for PIV 

a) b) 

c) 
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Data and data processing 
 
We performed particular ramps for two fixed  60,30out  rounds per minute (rpm). The 

inner sphere rotation has been varied between 2445  in  and 4890  in  for 

the respective out  so that we cover 2.05.2  Ro  in the Rossby number space, with a 
resolution of 30/1Ro . At each particular step, we waited 5 min to ensure an equilibrium 
state min)21( 12/1 

outE  and recorded the flow for 15 min in a horizontal plane at height 
4cm above the equator. 
 
The movies in the horizontal plane have been converted into gray scale images and ana-
lyzed by using the Matlab toolbox matPIV v.1.6.1 [7]. For the present purpose, a spatial reso-
lution of 1920x1080 pixels was sufficient to obtain reliable velocity fields. The sampling rate 
varies from 1/15s to 1/60s depending on the expected velocity magnitudes. We used three 
interrogation steps from 128x128 to 64x64 to a final window size of 32x32 pixels with an 
overlap of 0.5. A signal-to-noise filter, a peak height filter and a global filter that removes vec-
tors significantly larger or smaller than the majority of vectors, have further been applied. A 
Fourier analysis was applied to the velocity components ),( vu  to detect dominant frequen-
cies in the flow. For these frequencies, which usually represent inertial modes, the corre-
sponding flow patterns have been studied by a harmonic analysis. The harmonic analysis is 
a signal-demodulation technique in which the user specifies wave frequencies to be analyzed 
and applies least-square techniques to find the unknown amplitudes and phases of the 
waves [8]. 
 
Results 

 

We start by discussing the time-averaged velocity profiles. Fig. 3 shows the azimuthally av-
eraged azimuthal mean flow for four different Rossby numbers )76.1,37.1,65.0,25.0(Ro  
(colors and labeled) as a function of radius. The velocities are measured in the frame rotating 
with the outer shell. Therefore, the highest velocity is found to be inside the tangent cylinder 
(dashed line) above the differentially rotating inner sphere (note that the flow is retrograde). 
Moving outwards, the velocity is rapidly dropping down to almost zero (the Stewartson shear 
layer [5]) and remains constant for 5.0/ outrr . The most surprising fact in Fig. 3 is that the 
shear layer where the fluid velocity drops down is significantly shifted outwards compared to 
the location of the tangent cylinder where it was originally expected from [2]. Moreover, this 
intrusion of velocity into the bulk increases with decreasing Rossby number. What makes a 
comparison with analytic approximations difficult is that we are not in the Rossby number 
regime 1|| Ro  for which the theory holds. Therefore, we think that the strongly differentially 
rotating inner core has a much higher impact on the flow behavior than traditionally expected. 
However, the largest portion of fluid outside the tangent cylinder is indeed in solid-body rota-
tion with out which is in agreement to the assumptions of Rieutord et al. [2].  
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Fig. 3: Azimuthally averaged azimuthal velocity for 51067.0,rpm60  Eout

 for four different 
Rossby numbers (colors) as a function of the radius. The dashed vertical line marks the position of the 

tangent cylinder. 
 

Fig. 4 shows the amplitude spectra in log-log scale for 51067.0,rpm60  Eout  for the 
same four Rossby numbers )76.1,37.1,65.0,25.0(Ro . Generally, it can be seen that the 
background noise level increases with decreasing Rossby number, since the strength of the 
differential rotation and the wave activities increase. In particular, the spectra reveal different 
peaks, depending on the respective Rossby number. We found that these peaks correspond 
with distinct inertial modes (see labels which will be explained in the following). 
 
We use the following notation to determine the modes. Assuming that the patterns of the 
modes have structural similarities to the modes from previous studies, each mode can be 
identified in terms of spherical harmonics m

lY  with degree l  and order m . Further each 

mode has a frequency out /ˆ  . This notation )ˆ,,( ml  has been used in any of the pre-
vious studies [1,2,4,11,12].  
 
In order to get a first impression of the corresponding patterns, we extracted the most domi-
nant frequencies out of the spectra (Fig. 4) and filtered the velocity data for the extracted 
frequencies with the help of the harmonic analysis. The left column of Fig. 5 displays the 
harmonically filtered instantaneous velocity fields (mm/s) of the three most dominant fre-
quencies )62.0,08.0,70.0(ˆ   for the 60rpm ramp. All the shown patterns propagate retro-
grade, i.e. against the rotation of the outer shell. From these figures, we can derive the azi-
muthal wavenumbers m  visually: in case the vectors at the left and right hand side point in 
opposite directions, the mode has wavenumber 2m ; in case they point in the same direc-
tion, the mode has wavenumber 1m . Therefore, the three modes shown have wave-
numbers )1,1,2(m . A further cross-correlation of the velocity time series for different posi-
tions in the gap confirms the obtained wavenumbers.  
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Fig. 4: Amplitude spectra for 51067.0,rpm60  Eout  for four different Rossby numbers (col-

ors) as a function of out /ˆ   in the inertial wave range. The labels show inertial modes. 
 

 
Fig. 5: Left column: Measured instantaneous velocity (mm/s) at 4cm above the equator, filtered by the 

harmonic analysis for the parameters 67.1,1067.0,rpm60 5   RoEout ; inertial mode 
(3,2,0.71) (upper), (5,1,0.08) (middle) and (4,1,0.62) (lower). Right column: The corresponding analytic 
full-sphere instantaneous velocity fields (arbitrary units) from Zhang et al. 2001 [7] (see also Tab. 1). 
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To determine the l  number, we did a qualitative comparison to the analytic model of full-
sphere modes by Zhang et al. 2001 [4]. The right column of Fig. 5 shows the analytic full-
sphere modes )]6120.0,1,4(),0682.0,1,5(),6667.0,2,3[()ˆ,,( ml , which agree surprisingly 
well with our experimental modes )]62.0,1,4(),08.0,1,5(),70.0,2,3[()ˆ,,( ml . Note that we 
measured in proximity to the inner sphere’s north pole so that boundary layer effects cannot 

be excluded and might lead to differences. With this procedure, we uniquely determined two 
more modes )]52.0,2,5(),41.0,1,6[()ˆ,,( ml  labeled in Fig. 4. Table 1 gives a summary of 
the detected wave modes and their comparison to previously detected modes. 
 
Tab. 1: Uniquely identified inertial modes. Identification by comparison with the analytic model [4] and 
the experimental works from [2,12]. The abbreviations mean: ES - equatorial symmetric, EA - equato-
rial antisymmetric, SL - Stewartson-layer instability, taken from [11]. The values with subscript 'Triana' 
are taken from [12]. Note that the (5,1) mode is the low-frequency columnar Rossby mode [3]. 

(a) 
51035.1,rpm30  Eout  

),( ml  
ana̂  meas̂  Triana̂  || measRo  || TrianaRo  Inst. 

)1,6(

)2,5(

)1,5(

)1,4(

)2,3(
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4669.0
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  
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The most remarkable differences between the experimental spherical shell modes and the 
analytic full-sphere modes are: i) the frequency of the experimental spherical shell modes is 
mostly slightly higher than for the analytic modes. This is due to the presence of the inner 
sphere as it was already reported by Aldridge 1967 [9]. He reported that the frequency shift 
becomes larger when the aspect ratio of the spherical gap increases. However, the agree-
ment to the experiments conducted by Triana [12] is fairly well, in particular for the (3,2), (5,2) 
and the (5,1) mode (see Tab. 1). ii) In contrast to the others, the (5,1) mode has an axisym-
metric shape and could be identified as the first Stewartson-layer instability which sets in 
after solid-body rotation [10,11]. The negative analytic frequency in the full sphere means 
that this mode is propagating prograde. In contrast, in a spherical gap, the direction of prop-
agation changes its sign and becomes retrograde. This fact arises due to the β-effect which 
has different signs left and right hand side of the tangent cylinder (see [3] for detailed infor-
mation). 
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Summary 

 
In this study, we presented experimental results of a differentially rotating spherical gap flow 
with Ekman numbers 51067.0 E  and 2.05.2  Ro (the inner sphere is rotating 
slower or counter-rotates to the outer shell). The full optical access of the experiment gave 
us the opportunity, for the first time, to get quantitative insights about the structure of inertial 
modes excited by differential rotation. We compared them carefully with previous findings, 
experimentally [1,2,12] and, in particular, analytically from a full sphere model [4]. 
 
We found that, indeed, a large portion of the fluid outside the tangent cylinder is in solid-body 
rotation with the outer shell. Due to this fact, we detected a clear structural similarity between 
our experimental inertial modes and the analytic full-sphere modes, as long as there is no 
strong velocity component inside the tangent cylinder. Moreover, in agreement to [2], we 
found that all of our modes are nonaxisymmetric and antisymmetric with respect to the equa-
tor, except the columnar Rossby mode [3]. This could be confirmed by Kalliroscope visualiza-
tion in the meridional plane. All of the detected modes propagate retrograde (against the ro-
tation of the outer shell). An exception compared to the analytic modes is the columnar 
Rossby mode which propagates retrograde only in a spherical shell and prograde in a full 
sphere.  
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