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Abstract 
 
We want to discuss the evaluation of experimental data obtained by 3D-PTV measurements, 
with the aim of determine local curvature and torsion values of particle trajectories. In order to 
achieve this, we present measurement results inside a realistic model of the human conductive 
airways. This transparent model reaches from the trachea down to the sixth bifurcating gener-
ation. The performed measurements correspond to realistic oscillating flow at resting condi-
tions for an adult (Re = 2000, α = 3.0). Our volumetric measurement setup consists of three 
high-speed cameras and three high-power LEDs for illumination of the measurement volume, 
which focuses on the area around the main carina. After covering the calculation procedure to 
obtain local curvature and torsion values of the measured particle trajectories we investigate 
the calculated curvature and torsion fields for the case of peak inspiration and peak expiration. 
We further evaluate single exemplary trajectories, which are strongly influenced by secondary 
flow effects. The results reveal the great potential of both curvature and torsion in highlighting 
important flow structures. 
 
Introduction 
 
Flow measurements within the research field of human lung flow are often aimed at resolving 
the velocity field within different models and the effect of specific models on the developing 
secondary flows (e.g. Adler and Brücker 2007, Fresconi and Prasad 2007, Schröder et al. 
2012, Banko et al. 2016). One important mechanism, which contributes towards a good mixing 
of air within the human airways, has been found to be the Dean-mechanism and thoroughly 
studied by various authors (e.g. Schroter and Sudlow 1969 , Eckmann and Grotberg 1988, 
Fresconi and Prasad 2007). This flow effect leads to the evolution of two counter-rotating vor-
tices within a curved pipe flow. A mathematical solution for this problem has been presented 
by Dean 1928.  
All previously cited experimental studies relied on measurement techniques, which represent 
the flow field in an Eulerian frame and no information on Lagrangian flow properties are avail-
able. In the last years, research works have been presented, which try to describe important 
flow characteristics by Lagrangian properties (Braun et al. 2006, Xu et al. 2007, Liberzon et al. 
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2012). With the here presented study we want to link the recent research activities of investi-
gating the Lagrangian particle trajectory properties curvature and torsion with the research field 
of human lung flow.  
In order to achieve this, we set up an experiment to perform three-dimensional Particle Track-
ing Velocimetry (3D-PTV) measurements within a model of the human airways at flow condi-
tions similar to breathing at rest conditions (Re = 2000 and α = 3.0). From the obtained particle 
paths, we derive local curvature and torsion values. After introducing the steps in order to 
calculate these two scalars, we present our results in two ways. At first, we show the whole 
reconstructed flow field and identify important areas. After that, we exemplarily illustrate two 
single particle paths and their corresponding curvature and torsion signals. 
 
Lung model and experimental set-up 
 
The investigated lung model (see Fig. 1 a)) represents the six first bifurcation generations 
starting from the trachea onwards. Its geometry is generic but based on the proposed proper-
ties of a real lung by Weibel 1963 and Horsfield et al. 1971. A detailed overview of all its 
geometrical properties and about the processing steps in order to create this model is given 
by Adler and Brücker 2007. At this point, we just want to cover a few major characteristics. The 
diameter of the trachea d0 is 18 mm. The two main bronchi bifurcate asymmetrically as well as 
all following generations. The material of the model is a transparent silicone (Elastosil RT 601) 
with a refractive index of n = 1.4095.  
To take advantage of refractive index matching techniques we are using a water-glycerin mix-
ture (43:57 mass ratio) as the working fluid. Its dynamic viscosity is ν = 8.4·10-6 Pa·s and its 

density is equal to ρ = 1,150 kg/m3. In order to perform Particle Tracking Velocimetry meas-

urements the liquid is seeded with neutrally buoyant particles (dp = 100 µm, Vestosint). 
To mimic physiologically realistic flow conditions, we generate a sinusoidal flow through the 
model using a linear motor (MOOG, G400 series) and diaphragm piston pump. The adjusted 

tidal volume of V = 500 ml and the frequency of f = 0.15 Hz corresponds to breathing under 
rest conditions at Re = 2000 and α = 3.0. 
Three high-speed cameras (Phantom v12.1, Vision Research) are used to record particle im-
ages from three different perspectives. Volumetric illumination is achieved by pulsing three 
high-power LEDs (PT-121, Luminus Devices) at pulse-widths of 450 µs. The image acquisition 

rate is set to 500 Hz. A photograph of the whole set up is presented in Fig. 1 b). 

 
Fig. 1 a) CAD model of the investigated lung geometry b) Photography of the experimental set-up 

used in this study. 
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Three-dimensional Particle Tracking Velocimetry 
 
The acquired images are evaluated using a self-developed 3D-PTV algorithm, which has al-
ready been presented by Janke and Bauer 2016. The reconstruction of the particles is done 
by photogrammetric methods proposed by Mass et al. 1993. In addition, a stepwise particle 
reconstruction routine has been implemented to reduce the number of occurring ghost parti-
cles. The underlying principle of such a procedure has been introduced by Wieneke 2013. The 
particle tracking itself is performed in two steps. At first the trajectories are initialized using a 
four-frame approach (Malik and Papantoniou 1993). After successfully identifying single parti-
cle paths, the further tracking is done by extrapolating the current particle position to predict 
its position at the next time step. If there is a matching particle in the vicinity of the predicted 
position, the new coordinates are adjusted accordingly, elsewise the particle is lost. This ap-
proach is based on the procedure presented by Schanz et al. 2013. 
 
Calculation of Curvature and Torsion 
 
Starting from the results, obtained by the 3D-PTV measurements, which are typically a list of 
all tracked trajectories with their corresponding particle coordinates at each time step, we can 
calculate the local curvature κ and torsion τ along the particle path. Curvature and torsion are 
two scalars, which characterize the geometry of a space curve. Whereat the curvature is a 
measure of how strong a particle path differs from a straight line and the torsion gives a meas-
ure for how strong the curve bends away from the plane of curvature. With the following defi-
nitions these two scalars can be calculated: 

 (1)

∙
| |

 (2)

 
In these equations x denotes the time dependent world-coordinates of the curve or particle 
position in our case. The number of dots above x indicates the order of the time derivation. To 
provide a better understanding of the curvature and torsion, we want to discuss both quantities 
in a simple example – a helix-curve with a constant radius r and a constant rise a (see Fig. 2). 
The coordinates of such a curve can be described as followed: 

∙  (3)

∙  (4)

∙  (5)

To cover a full turn of the curve, we want to define t in the range between t = 0…2π. With 
values of r = 1 and a = 1, we obtain the space-curve illustrated in Fig. 2. With equations (1) 
and (2) we can calculate the curvature and torsion for this case as κ = 0.5 and τ = 0.5. Since 
our PTV results represent discrete points of a particle path, both the curvature and torsion can 
only be evaluated at those discrete points. Therefore all needed time derivatives have to be 
formulated in a discrete manner and are calculated by a central differencing scheme for our 
case. The problem with such numerical derivatives is, that they are highly affected by any 
occurring noise in the data, especially for the case when there is a need for higher derivatives, 
like the third time derivative for the calculation of the torsion.  
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To show the influence of this effect, we discretize the previously defined helix-curve with one 
hundred data points and added a random noise with a standard deviation of σ = 0.001. The 
calculated curvature and torsion values are plotted in Fig. 2. As we can see, there are fluctua-
tions within both signals, which are not physically but a consequence of the numerical calcu-
lation. Using a robust smoothing algorithm (Garcia 2010), we are still able to recover the mean 
values.  

 

Fig. 2 Values of curvature κ and torsion τ (left; signal of ground truth, signal of noisy data, 
smoothed data) along a helical space-curve with constant radius and rise (right). 

 
Results and Discussion 
 
For the measurements, carried out here, we are able to reconstruct a total number of around 
11,000 particle paths with a minimum tracked period of five time steps. For the results, shown 
here, only particle paths with a tracked period of at least ten time steps are evaluated in order 
to reduce the influence of falsely reconstructed trajectories. In Fig. 3 those particle paths are 
illustrated for the cases of peak inspiration and peak expiration. In addition, the trajectories are 
color-coded with either their calculated local curvature or torsion value. The reconstructed vol-
ume is shown in top view with the trachea in the center, the left main bronchi is located on the 
right side, and the right main bronchi on the left. 
For the case of peak inspiration, areas of high curvature can be found at those positions, where 
the well-known Dean vortices start to develop. As a result, near-wall particles are forced into a 
helical motion towards the center line of the airway.  With the corresponding torsion represen-
tation we are able to determine the sense of rotation of these helical structures. Whereat pos-
itive torsion values indicate a right-handed rotation in the direction of flow and negative torsion 
values a left-handed one. We can find this clear separation of counter-rotating structures down 
to the third generation of bifurcation. 
For the flow phase at peak expiration a clear symmetry within the first bifurcation, as seen 
during the inspirational flow phase, cannot be found. The maximum curvature values are also 
slightly smaller for the case of expiration. As already stated in other studies (Adler and Brücker 
2007; Fresconi and Prasad 2007; Coletti and Elkins 2015), we can detect a four vortex pattern 
within the trachea. But we find the posterior vortex, originating from the right primary bronchus, 
to result in significantly higher curvature values. The volume representation, color-coded with 
the torsion, is revealing the separate counter-rotating structures very well as already seen for 
the case of inspirational flow. 
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Fig. 3 Local curvature (left) and local torsion (right) of reconstructed particle trajectories for Re = 2000 
and α = 3.0 at peak inspiration (upper row) and peak expiration (lower row). 

 
The next results we want to present are single exemplary particle trajectories for both flow 
phases. For each of them, we illustrate their position within the flow field, a top-down view of 
its path, as well as their calculated curvature and torsion signal (with and without smoothing). 
In Fig. 4 a particle path during peak inspiration is illustrated. The particle starts in the trachea, 
passes the right main bronchus and is lost after it has reached the next daughter generation. 
During this path, two areas with high curvature can be identified. The first one is at the main 
carina, where the flow is divided. The second one is right after, where the particle is under the 
influence of secondary flow motion, which leads to a traverse of the particle from the posterior 
to the anterior side of the model. 
A chosen particle path for peak expiration is shown in Fig. 5. The tracked particle was detected 
at the first daughter bifurcation of the left main bronchus and could be tracked until it reached 
the tracheal area. Originating from the lower branches at a near-wall position, the particle was 
trapped by a vortex, resulting in a tight winding spiral motion right after the bifurcation. This 
spiral stretches, the further the particle travels downstream in the left bronchus until no helical 
motion can be detected anymore. Along this particle path four curvature maxima can be de-
tected. The first one is linked to the change of direction, where the particle is transported from 
the near-wall position towards a more centered position within the airway. At position 2, the 
particle got trapped within a vortex, where it starts to spiral around a center axis. This is also 
indicated by a slowly increasing torsion value. The torsion increases, as the spiral gets 
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stretched and decreases again as the influence of the vortex vanishes. Positions, marked with 
the numbers 3 and 4 reveal, that the curvature value is not constant but reaches local maxima 
in a periodically manner. 
 

 
Fig. 4 Evaluation of a single particle trajectory during peak inspiration. Illustration of the particle path 
position within the reconstructed volume (left), particle path in x-z-plane (right-top), curvature signal: 

raw,  smoothed (right-middle), torsion signal:  raw,  smoothed (right-bottom). 

 
Fig. 5 Evaluation of a single particle trajectory during peak expiration. Illustration of the particle path 
position within the reconstructed volume (left), particle path in x-z-plane (right-top), curvature signal: 

raw, smoothed (right-middle), torsion signal:  raw,  smoothed (right-bottom). 
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Conclusions 
 
The evaluation of curvature and torsion of particle paths inside a realistic model of the human 
conductive airways, obtained by three-dimensional Particle Tracking Velocimetry (3D-PTV) 
measurements, have been presented. The investigated model is a generic representation of a 
human adult lung, covering the airways starting from the trachea down to sixth generation of 
bifurcation. Using three high-speed cameras and three high-power LEDs we were able to re-
construct the three-dimensional flow field around the main carina at peak inspiration and peak 
expiration for flow conditions representing breathing under rest conditions (Re = 2000, α = 3.0). 
After giving a brief description about the used 3D-PTV algorithm, we described the calculation 
of the curvature and torsion for an idealized helix-curve. We could show that, due to the need 
of higher derivatives and numerical differentiation, occurring noise has a strong impact on the 
resulting curvature and torsion signals. However, after applying a robust smoothing algorithm, 
we were still able to recover the correct values. 
The investigation of the local curvature within the whole reconstructed volume revealed areas 
with high curvature values, caused by particle trajectories under the influence of secondary 
flow effects. Illustrating the local torsion, we showed, that we can get a measure of the sense 
of rotation of the Dean-vortices, represented by either positive or negative signs of torsion.  
The concrete influence of such a Dean vortex on a single particle could be measured. For such 
a case we showed the corresponding curvature and torsion. We found local maxima within the 
curvature signal and an increasing torsion value as the helical particle path get stretched.  
To conclude, the curvature and torsion can be used well to highlight important flow properties, 
especially for flows strongly influenced by secondary motion, as found in the human lung. For 
the future, we are planning to compare lung models with different geometries and their effect 
on the corresponding curvature and torsion values to extend the results gained by the here 
presented study. 
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