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Abstract

Using optical flow to analyze particle image velocimetry (PIV) images is a promising technique to
increase the resolution of the calculated velocity fields while enabling the analysis of images beyond
the capability of traditional cross-correlation algorithms. Based on the conservation of pixel intensity
between PIV image pairs, the optical flow algorithm used in this work is a multi-scale adaptation of
Horn and Schunck’s optical flow. To better adapt the method to the analysis of experimental PIV
images, two techniques are proposed; i) an objective framework to aid in selecting the smoothing
parameter, and ii) a method to apply physically motivated boundary conditions to the calculated
velocity field. Combining both methods in an analysis of an experimental image series with high re-
fractive distortion demonstrates their effectiveness, and further establishes optical flow as a valuable
PIV analysis tool.

Introduction

Particle Image Velocimetry (PIV) is a method to extract velocity fields from experimental fluid flows.
Traditionally calculated by subdividing the input image pair into “interrogation windows” and using
cross-correlation to calculate the displacement of seeding particles between images, the technique
is quite robust in analyzing complex flows. However, as detailed by Ruhnau et al., 2005, the use of
interrogation windows has some drawbacks:

1. The interrogation window size limits the resolution of the output field. Smaller interrogation
windows result in lower correlation peaks, and thus more erroneous vectors, but higher reso-
lution velocity fields.

2. Bulk particle motion within each interrogation window is considered homogeneous, which is
not physically true.

3. Velocity estimation does not take advantage of flow structures at different scales, which could
be used to infer motion in regions without reliable estimations.

To overcome these limitations, researchers have been investigating other algorithms to supplement
or replace traditional cross-correlation methods. One of the most promising is optical flow (Horn &
Schunck, 1981), developed by the computer science community for machine-vision. The algorithm
works on the premise that for two, 2D projections of a 3D scene (i.e. video frames) there exists
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a two-dimensional velocity field which moves the first image toward the second. Beginning with
Quénot et al., 1998 and Ruhnau et al., 2005, this analogy was applied to PIV images, which is a
physical manifestation of optical flow, where 2D images of illuminated seeding particles are taken
of a fluid in which a flow field advects the first image toward the second.

Although optical flow has enjoyed early success in experimental fluid dynamics, some open issues
remain. Foremost among them is a suitable way to select the scalar smoothness parameter, used in
the variational minimization to balance the data term with the regularizer. Secondly, when analyzing
channel flow, both Ruhnau, 2006 and Kapulla et al., 2011 have shown the algorithm’s difficulty
in resolving boundary layers where the calculated velocity fields exhibit errors near the channel
walls where the velocities do not approach zero as expected. In this paper, we propose techniques
to overcome both of these issues, and present the results when these techniques are applied to
experimental PIV images.

Theory

The optical flow algorithm used throughout this work is based on that of Ruhnau et al., 2005. Their
work incorporates the original method of Horn & Schunck in a pyramidal coarse-to-fine motion es-
timation which is more robust in calculating the large displacements that may be present in PIV
image pairs. The method is based on the conservation of image brightness, I (x, y, t), defined at
coordinates x, y for time t, in Equation 1.

DI (x, y, t)

Dt
= 0 (1)

When differentiated with the chain rule, and using shorthand notation, the brightness consistency
constraint of Equation 2 is obtained. I variables are image derivatives along the indicated dimension,
while u and v are the x and y components of the velocity field.

Ixu+ Iyv + It = 0 (2)

Having only one equation in two variables (u and v), a second condition is needed. In the case of
Horn & Schunck, the L2 norm of the velocity gradients, Equation 3, is used.

|∇u|2 + |∇v|2 = 0 (3)

It is not possible to directly solve Equation 2 and Equation 3 however, since neither is exactly zero
due to quantization errors and image noise. Therefore, they are equated to error terms in Equa-
tion 4, and combined into a minimization expression together with a scalar weighting parameter α
in Equation 5.

Edat = Ixu+ Iyv + It (4a)

E2
reg = |∇u|2 + |∇v|2 (4b)

L =

∫
Ω

[
E2
dat + α2E2

reg

]
dx dy (5)

Using the calculus of variations, the minimization of Equation 5 results in the coupled system of
Equations 6a and 6b.

I2xu+ IxIyv = α2∆u− IxIt (6a)

IxIyu+ I2yv = α2∆v − IyIt (6b)
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To use Equation 6 in a pyramidal scheme, Ruhnau et al. propose Equation 7, where the Laplacian is
split into two components, one using the estimated velocities the current pyramid level, L, and one
using the the previous, coarser velocity estimate, L+ 1.

I2xuL + IxIyvL = α2(∆uL+∆uL+1)−IxIt (7a)

IxIyuL + I2yvL = α2(∆vL +∆vL+1)−IyIt (7b)

To generate the images needed for the coarse-to-fine motion estimation, a gaussian pyramid is
constructed by successively filtering and sub-sampling an input image as shown in Figure 1. To
prevent aliasing between levels, additional “scale levels” are generated by further filtering the images
at each pyramid level. Velocity field calculation begins on the uppermost pyramid level, on the image
with the most filtering, and ends with the original input image pair as shown in Figure 2.
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Figure 1: The gaussian pyramid, built from original image (pyramid base) through successive filtering and
sub-sampling. Adapted from Ruhnau et al., 2005.
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Figure 2: Processing order of the image pyramid together with scale levels. Calculation begins on the most
blurred, and down-sampled level (PL3, SL3) and proceeds until the original input image (PL1, SL1).

Smoothing Parameter Selection

Most literature on optical flow present results where the smoothing parameter α in Equations 5 to 7
is heuristically chosen. This is not ideal for fluid flow analysis since an incorrectly chosen value can
bias velocity estimates – too large a value results in an overly smoothed velocity field, while too small
a value results in a velocity field dominated by noise from the system becoming under-determined
(Atcheson et al., 2009). Thus, it is desirable to find a deterministic way to choose the smoothing
parameter, with the hope of accurately capturing the underlying flow field of the PIV images.
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From the existing literature, only a handful of publications exist which propose an objective way to
select the smoothing parameter, the methods of which are summarized below:

• Ng & Solo, 1997: the optimal smoothing parameter minimizes a proposed “risk” function.
• Krajsek &Mester, 2007: the optimal smoothing parameter is selected via a proposed Bayesian
framework.

• Zimmer et al., 2011: the optimal smoothing parameter predicts the next image in the sequence
most accurately.

• Tu et al., 2012: the optimal smoothing parameter minimizes the difference between warped
frames.

Stemming from its ability to predict an optimal smoothing parameter without a priori knowledge of the
image noise, its simple framework, and its use of just two image frames, we propose a framework to
determine the optimized smoothing parameter for a set of PIV images based on the work of Tu et al.,
2012. The idea behind the approach is intuitive; velocity fields calculated with different smoothing
parameters are used to warp (i.e. advect) the input images toward each other. The warped image
pair with the lowest intensity RMS, calculated using Equation 8, is considered optimally smooth.
Iw1(i, j) and Iw2(i, j) are the per-pixel intensities of the warped images at pixels i and j, with m
and n the vertical and horizontal resolution of the images, respectively.

Warp RMS =

√∑m
i=1

∑n
j=1

(
Iw1(i, j)− Iw2(i, j)

)2
mn

(8)

The process proceeds as follows:

1. From a single PIV image pair, calculate velocity fields for the series of smoothing parameter
values. It is recommended to use values spaced along logarithmic decades, spanning a large
range as the error is not necessarily convex and may have local minima.

2. Find the parameter value which results in the lowest warp RMS.
3. Process the entire PIV image series using the chosen smoothing parameter value.

The process is demonstrated using a series of 20 synthetically generated image pairs of pouseuille
flow1, using 5 pyramid levels, and 6 scale levels. Smoothing values are distributed along the loga-
rithmic decades from 0.001–100, and only the first image pair in the series is processed. The warp
RMS calculated at each smoothness value is plotted in Figure 3.
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Figure 3: Warp RMS evolution for frames 1 and 2 of the poiseuille image set at various smoothing values.

From Figure 3, the optimal smoothing parameter value is observed around 0.005 and the 19 remain-
ing image pairs are processed with this value. The resulting series averaged velocities are shown
along with the ground truth velocities in Figure 4.

1Generated by Carlier, 2005. Available at http://fluid.irisa.fr/data-eng.htm
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Figure 4: Series-averaged velocity components of poiseuille flow compared to the ground truth velocity field.

Aside from errors on the left and right hand side of the velocity field, where particles enter and leave
the image, the calculated velocity field corresponds closely to the ground truth. For a quantitative
comparison, series averaged results at each smoothing parameter value are compared to the ground
truth using the magnitude error (Equation 9, the L1 norm from Ruhnau et al., 2005) and endpoint
error (Equation 10, from Baker et al., 2011). The resulting error curves over the range of smoothing
parameters are presented in Figure 5.

ME =

∣∣∣∣ √u2calc + v2calc −
√

u2ref + v2ref

∣∣∣∣ (9)

EE =
√

(ucalc − uref )2 + (vcalc − vref )2 (10)
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Figure 5: Error evolution of the poiseuille image set at various α values.

Although the proposed smoothing parameter selection underestimates the optimal value from the
perspective of minimum average endpoint or magnitude error, the results are nonetheless very good.
Considering the average displacement between frames is 1.33 pixels, and the errors at the selected
smoothing parameter on the order of 0.01 pixels, the error is less than 1%. This corroborates the
qualitative conclusion drawn from Figure 4 that the velocity field calculated with the objectively cho-
sen smoothing parameter adequately captures the underlying flow field of the input images.

Applying Boundary Conditions

By refining a technique of Ruhnau, 2006 where features are added to the input PIV image pairs,
we propose a method to reduce velocity errors in boundary regions. Example patterns to be added
to the side of the image where the boundary condition is enforced are given in Figures 6 and 7 for
no-slip, and parallel conditions, respectively. The patterns are oriented so the boundary condition
is applied along the lower edge, and have intentionally been kept small to not significantly increase
processing time.
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.

Figure 6: Parallel boundary condition shown on a pixel grid.

.

Figure 7: No-slip boundary condition shown on a pixel grid. The pattern is unique over 108 pixels, being
designed to handle images with large displacements.

By adding the same patterns at the same location in both input images, motion can be constrained
along intensity iso-gradient lines. By modifying the pattern, one can change type of the intended
boundary condition; pattern variations in the y-direction constrain motion in the y-direction, while
pattern variations in both directions constrain motion in both directions. And, since the condition is
only enforced where an intensity gradient exists, one can change strength of the boundary condi-
tion, many small alternating features impose a distributed, albeit slightly weaker boundary condition
compared to a few large alternating features imposing a stronger condition at fewer points.

Since the technique only requires the addition of the patterns to the input images, only the data term
of Equation 5 is affected, making the boundary conditions “data-driven”. Consequently, it can be
used with existing optical flow codes without requiring any modification. It should be pointed out
that although the proposed patterns have been found to be very effective, care must be taken with
analysis using very large smoothing values, which can override the desired effect of the data-driven
boundary conditions.

To demonstrate the effect of the proposed boundary conditions on the calculation of velocity fields,
results obtained from a single pair in the poiseuille image set are presented with the previously de-
termined smoothing parameter value of 0.005. Consistent with the ground truth (reference) velocity
field, a no-slip boundary condition is used, and compared to the same velocity calculation without
the patterns added (no b.c.) in Figure 8.
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Figure 8: Velocity profile of the poiseuille flow with and without the no-slip boundary condition. u velocity
profile on the left, v on the right.

Additionally, the GEM_12 results of Kapulla et al., 2011 have been reprocessed with the use of
data-driven boundary conditions. The synthetic images, which were generated from a large eddy
simulation (LES) of density mixing in a channel, have been analyzed using a smoothing value of
0.09 as reported in the original study. Velocity profiles extracted at i = 200px are shown in Figure 9.
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Figure 9: Velocity profiles of the GEM_12 flow with and without the no-slip boundary condition. u velocity
profile on the left, v on the right, see Kapulla et al., 2011.

Although in both cases, the u velocity component does not reach exactly zero at the wall, the profiles
in the boundary regions have been improved considerably. For both the poiseuille and GEM velocity
fields, the correct velocity profiles were extracted without lowering the smoothing parameter, implying
that the velocities are not over-smoothed in this high-gradient region by a sub-optimal smoothing
value, as previously suggested by Kapulla et al., 2011.

Experimental Results

Combining the concepts of smoothing parameter selection and data-driven boundary conditions, a
series of experimental PIV images are analyzed. Images are taken from a GEneric MIXing (GEMIX,
see Eggertson et al., 2011) density mixing experiment, where two inlet streams, de-ionized water
above, and sugar-water solution below, mix in a square channel as shown in Figure 10. The 10%
density difference between the two inlet streams causes refractive distortion which blurs the particle
images in the mixing region, and parts of the laser light sheet are reflected into the camera. The
experimental images are well suited to optical flow over traditional cross-correlation analysis since
correlation strength is particularly weak in the blurred mixing zone, the region of interest, .

.....
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.

800mm

.50mm

Figure 10: Schematic of the GEneric MIXing (GEMIX) channel. Two water streams enter the channel at the
right and mix along its 800mm length. A laser induced fluorescence (LIF) image is included in the schematic
to highlight the mixing layer.

Before optical flow analysis, the raw PIV images are pre-processed with the intensity normalization
algorithm detailed in Kapulla et al., 2011. This step reduces laser light artifacts, and compensates
for light sheet non-uniformities. Experimental images before and after processing are shown in
Figure 11.

Figure 11: Experimental GEMIX image before (left) and after filtering (right).
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After filtering, the no-slip boundary condition pattern is added to the top and bottom of the images
to mimic the presence of the channel wall. A suitable smoothing parameter, α is determined using
the previously proposed framework, with the resulting warp RMS curve shown in Figure 12.
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Figure 12: Warp RMS curve for a single GEMIX image pair.

A value of 0.01 is chosen for the smoothing parameter, and the remaining image pairs processed
using 5 pyramid levels and 6 scale levels. The velocity averaged over all 1024 frames, along with
velocity RMS values are shown in Figures 13 to 16.
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Figure 13: Mean u velocity field for series averaged experimental GEMIX images.
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Figure 14: Mean v velocity field for series averaged experimental GEMIX images.
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Figure 15: u RMS for the experimental GEMIX image series.
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Figure 16: v RMS for the experimental GEMIX image series.

As expected from the use of no-slip boundary conditions, the average u and v velocities near the
upper and lower channel walls is nearly zero, as seen in Figures 13 and 14. The fidelity of the
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boundary layer is especially impressive considering the small number of pixels it is spread over –
the vertical resolution of the PIV images, and thus the calculated velocity field, is 196 pixels.

In the velocity RMS plots (Figures 15 and 16), even though there is some noise caused by the
reflection of laser light, the mixing region can be clearly seen, with the spreading of the mixing
interface especially visible in Figure 16. To reduce the noise in the RMS plots would require a
larger image set, or a higher smoothing value than calculated. Overall, the fidelity of the results are
very good given the quality of the input images, and provide an excellent starting point for further
investigation of density mixing experiments.

Conclusion

Methods for selecting the smoothing parameter and applying boundary conditions for analyzing PIV
images have been presented. Application of the smoothing parameter selection framework has been
demonstrated using a series of synthetically generated PIV images of poiseuille flow. The calculated
velocity field using the selected smoothing parameter results in magnitude and endpoint errors less
than 1% of the magnitude of the mean flow. The addition of no-slip boundary conditions to the input
images has also been tested with a synthetic poiseuille image pair, along with synthetically images
generated from an LES simulation of density mixing as reported in Kapulla et al., 2011. In both cases,
the velocity profile near the wall is more faithfully reproduced when using data-driven boundary
conditions. Finally, experimental PIV images are analyzed using the smoothing parameter selection
framework along with no-slip boundary conditions. The resulting flow fields are of exceptionally high
quality, and showcases the advantage of using optical flow in analyzing images with large amounts
of blurring.
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