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Abstract 
 
The ensemble correlation method for particle image velocimetry (PIV) is shown to contain the 
joint velocity probability density function. The velocity probability density function (PDF) can 
be interpreted as a deterministic part in the ensemble correlation of PIV images. The correla-
tion with particle images at other locations can be interpreted as a random part. The probabil-
ity of the random part can be quantified in terms of the auto-correlation of the intensity of the 
first image and the probability density of the velocity. Thereby, it can be eliminated from the 
correlation functions to obtain the velocity PDF. Thus, the velocity PDF can be obtained at 
single pixel resolution in both, laminar and turbulent flows. The accuracy of the method is 
assessed by using synthetic PIV images in terms of various parameters such as particle 
density, number of image pairs, and pixel resolution of the velocity distribution. 
 
1. Introduction 
 
Particle Image Velocimetry (PIV) is one of the state-of-the-art non-intrusive measurement 
techniques for laminar and turbulent flows. It allows for instantaneous measurement of 2D or 
even 3D velocity fields. For turbulent flows, in most cases statistical moments of the joint 
velocity distribution function are computed, like the average flow or elements of the Reynolds 
stress tensor or higher moments. The standard algorithm for PIV (that is also available in 
commercial PIV systems) uses interrogation windows to compute the correlation of two con-
secutive images of particles in the flow field. The correlation peak marks the mean displace-
ment of the particles inside of the interrogation window. Thus it determines instantaneous 
velocity vectors that are spatially averaged over one interrogation window. The interrogation 
window technique has therefore the disadvantage of a loss of spatial resolution as in most 
cases 16 or 32 pixels have to be used for one interrogation window to obtain a sufficient 
number of particles for a well pronounced correlation peak. This is especially problematic in 
situations in which a strong mean shear is present in the velocity field, which smears the cor-
relation peak. For such situations techniques have been developed that use sheared images 
(Raffel et al. 2007). 
Meinhard & Werely 2000 proposed to use more than one image pair to compute the image 
correlation (ensemble correlation technique). Thus, the signal-to-noise ratio can be improved 
without using larger interrogation windows. The spatial resolution is improved at the cost of 
temporal resolution. Westerweel et al. 2004 used this method for the evaluation of micro-
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scopic PIV data to improve the spatial resolution. They emphasize the fact that in laminar 
flows a single pixel resolution can be obtained. They determine the (laminar) velocity vector 
from the peak of the single pixel correlation of the image pairs. The number of samples re-
quired for a pronounced correlation peak is obtained by increasing the number of window 
pairs. The authors state however that only in steady flow situations a clear correlation peak 
can be achieved as the peak is smeared out in turbulent flows. Subsequently, the single pixel 
ensemble correlation technique has been used successfully by several authors in the field of 
micro-PIV in which laminar flows are present. 
Kähler et al. 2006 assess the ensemble correlation technique as proposed by Westerweel et 
al. 2004 in a turbulent boundary layer flow. They are able to measure time averaged veloci-
ties at high accuracy and conclude that it is a useful technique for assessing averaged flow 
vectors at high spatial resolutions. This is especially useful close to the wall where the use of 
an interrogation window would limit the resolution. The ensemble correlation technique can 
improve the spatial resolution considerably. However, a direct measurement of the Reynolds 
stresses was not possible with these first approaches. 
The single pixel correlation function contains the joint velocity probability function (jPDF) as 
pointed out by Scharnowski et. al. 2012. In principle, if that function was known, all moments 
of the jPDF could be determined including the Reynolds stress tensor, skewness and flat-
ness. The problem is the low signal-to-noise ratio that inhibits a direct determination of the 
moments. Scharnowski et. al. 2012 proposed to fit a 2D multivariate Gaussian into the corre-
lation peak. They demonstrate that for certain kinds of flows, the Reynolds stress tensor can 
be estimated up to a reasonable accuracy. However, this approach is limited to Gaussian 
velocity distributions and therefore might not be applicable in wall proximity as the velocity 
signals there strongly deviate from Gaussian behavior (Moser et al. 1999). 
In this manuscript, we emphasize that the correlation between two PIV images contains two 
parts, a deterministic displacement of the intensity of the first image due to the flow vector 
and a random part due to the random correlation of different particles. We quantify both con-
tributions in terms of the auto-correlation of the intensity of the first image and the probability 
density of the velocity. By this we are able to subtract the random part and to directly deter-
mine the jPDF of the velocity from particle image pairs to single pixel accuracy. 
The manuscript is organized as follows. The next section introduces the theoretical back-
ground used in the technique. Section 3 describes a method to demonstrate the proof of 
concept of the technique by synthetic images. A consistent parameter study is used in sec-
tion 4 to determine the dependence of the accuracy of the method on parameters such as 
number of image pairs and type of induced velocity PDF. 
 

2. Theory 
 

We demonstrate that the correlation function of two images of randomly distributed particles 
displaced by a certain velocity vector within a time interval Δt contains two contributions, a 
deterministic and a random one. We start by defining the intensity of each image. The inten-
sity of the first image is denoted by      , the one of the second image by      . The intensity 
of the first image is given by a random distribution of particles in space       convolved by 
the intensity function of a single particle   . So,       can be written as 
 
      ∫                       (1) 
 
As the position of the particles in the second image result from the displacement   of the par-
ticles in the first image due to the local velocity vector           within the time interval Δt 
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of the two consecutive images, the particle distribution of the second image can be described 
by the following expression: 
 
                                 (2) 
 
with   being the Kronecker delta used as sifting function. As      and   are functions of 
space, the intensity of the second image is obtained as 
 
       ∫             ∫                               (3) 
 
In other words the intensity of the second image can be expressed by intensity of the first 
image shifted by the displacement vector. So the intensity of the second image contains two 
contributions which result from a shift of the intensity from    to          (deterministic) 
and from the other points to          . The latter contribution is not correlated to the in-
tensity at    due to the random nature of the particle distribution in the first image. It can be 
regarded as random part contributing to the noise in the correlation function. 
 
The single pixel correlation technique is based on the correlation of single pixels of image 
pairs: 
 
         〈            〉         (4) 
 
Using the fact that the second image can be decomposed in a deterministic and a random 
part, the correlation function          can as well be written as the sum of a deterministic 
and a random part. 
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Taking into account that the probability of the random contribution           can be ex-
pressed by             , with           being the probability of the deterministic part, 
it is possible to quantify the random part of the correlation function. Solving Eq. (5) for 
          gives the velocity probability density function (PDF): 
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        (6) 

 
3. Description of synthetic test images 

 
We are using synthetic images to test our approach. Thereby we can impose a certain ve-
locity PDF and compare whether our estimated PDF's converge to the imposed ones. There-
fore synthetic images with different parameters were generated. The size of the images was 
set quite small compared to actual PIV images as we only reconstruct the velocity PDF at the 
central point of the images. The range of pixels/bins was varied from 20 to 61 in one direc-
tion. 
The first image of an image pair was created by generating a random distribution of particles, 
each covering exactly one pixel. In this step of the study, we used a particle size of one pixel. 
The particle density was varied between 1 and 50 percent. The second image of an image 
pair was generated by a displacement of the first image by a certain displacement vector 
corresponding to a velocity vector. The velocity or displacement vector, respectively, was 
generated by a random number generator giving either a Gaussian or a positive/negative 
skewed normal distribution. 
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Thus a large number of image pairs, each representing a certain velocity, was generated and 
in total all of these image pairs contribute to the desired velocity PDF. By variation of the 
number of image pairs the dependence of the accuracy of the algorithm on the number of 
image pairs could be determined. 
To evaluate the algorithm we computed the image correlation from which the velocity PDF 
has been determined using Eq. (6). This PDF is being compared with the imposed one. The 
same we do for the first and second moment of the PDF, the mean and the root mean 
square of the fluctuations. 
To assess the level of accuracy of the proposed method certain parameters were varied, 
such as the number of pixels representing the induced PDF of the velocity as well as the 
number of images used and the number of pixels/bins of the images themselves. In this con-
tribution we demonstrate the basic capabilities of our approach in a 1D setting. 
 
4. RESULTS AND DISCUSSION 

 
As described in the previous section the new algorithm was tested for various parameter 
sets. For clarity we restrict ourselves in the following figures to a 1D situation showing dis-
placements, correlation functions and velocity PDF’s in x-direction only. This is useful to be 
able to assess the dependence of the results on various parameters of the algorithm. It has 
to be noted that an extension to two-dimensional situations is straightforward. 
 
In Fig. 1 the fundamental relationship, Eq. (5), is demonstrated. The x-axis represents the 
displacement   . The correlation function          is plotted for a fixed position       and all 
functions are normalized by        . It can be seen, that the correlation function does not de-
cay at large displacements as it should and that it is somehow shifted upwards compared to 
the imposed PDF. This is due to the random part of the correlation. By applying the correc-
tion, Eq. (6), to the correlation, the PDF of the velocity, which is the deterministic part of the 
correlation function, can be reconstructed. One can see in Fig. 1 that this was successful. 
Note, that here 500.000 image pairs at a particle density of 5% were used. This gives a 
number of 25.000 velocity samples to obviously minimize the statistical error. 
 

 
Fig. 1: Comparsion of imposed PDF, normalized result of single-pixel correlation R and reconstructed 

PDF, 43 bins, particle density 5 %, 500.000 images. 
 
In a next step we investigate how the estimated PDF converges to the one which was im-
posed by the random number generator used for the displacement velocities. In Fig. 2 the 
velocity PDF’s estimated from the single pixel correlation function at various numbers of im-
age pairs have been plotted. For this investigation it is important to note that the imposed 
PDF’s change with an increasing number of image pairs and converge to the one that is plot-
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ted in Fig. 1. The reconstructed PDF’s therefore can only reconstruct the PDF’s at a given 

number of image pairs. The error in evaluating the velocity distribution consists here of two 
contributions: (i) the statistical error of the actual velocities and (ii) the error due to the corre-
lation method. With increasing number of image pairs, both errors converge to zero. 
 

 
Fig. 2: Convergence of the reconstructed PDF towards imposed PDF with increasing number of 

images: 43 bins, particle density 5%. Plots for different numbers of image pairs are shifted for clarity. 
 
As the derivation of Eq. (5) is independent of the form of the PDF, there is no need for it to be 
Gaussian. To examine how well non-Gaussian PDFs are estimated, we generated displace-
ment velocities according to a skewed Normal distribution. In Fig. 3, we observe that the 
convergence, noted in Fig. 2 for a Gaussian shaped PDF, is also obtained for non-Gaussian 
PDFs. They are reproduced within a similar level of accuracy as the Gaussian ones. 
 

 
Fig. 3: Comparison of imposed PDF with reconstructed PDF for a skewed Normal distribution.  

43 bins, particle density 5%. The plots for different numbers of image pairs are shifted for clarity. 
 
Further on, we estimated the convergence of the first and second moment of the velocity 
PDF with the increasing number of image pairs. In Table 1, estimated mean velocities (first 
moment) as well as the second moments are compared to the imposed ones for Gaussian 
PDFs.  
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Tab. 1: Convergence of the 1st and 2nd moment of the reconstructed Gaussian distributed velocity PDF 
with increasing number of images, 43 bins, particle density 5%. 

number of 
images 

imposed 
<u> 

reconstructed 
<u> 

error in 
<u> [%] 

imposed 
Urms 

reconstructed 
Urms 

error in 
Urms [%] 

1 000 0.2004 0.1765 11.91 0.0860 0.0932 -8.43 
10 000 0.1999 0.2016 -0.87 0.0866 0.0961 -10.89 
100 000 0.1999 0.2015 -0.78 0.0875 0.0922 -5.35 
500 000 0.2000 0.1978 1.14 0.0877 0.0901 -2.79 
 
In Table 2 a comparison of the first and second moment of the skewed Normal distribution is 
given. What has been already observable in Fig. 1 and 2 can also be seen here: with an in-
creasing number of image pairs, the mean velocity as well as the root mean square will con-
verge to the imposed values. One should note that due to the binary set up of the image 
(pixel covered by a particle contains value 1, empty pixel contains value 0) an effect similar 
to peak locking will occur, so that the error in the mean velocity will fluctuate in the range of 
1%. 
 
Tab. 2: Convergence of the 1st and 2nd moment of the reconstructed skewed normal distributed veloci-

ty PDF with increasing number of images, 43 bins, particle density 5%. 
number of 
images 

imposed 
<u> 

reconstructed 
<u> 

error in 
<u> 
[%] 

imposed 
Urms 

reconstructed 
Urms 

error in 
Urms 
[%] 

1 000 0.1894 0.1644 13.22 0.0865 0.1193 -37.88 
10 000 0.1885 0.1745 7.44 0.0877 0.1283 -46.32 
100 000 0.1883 0.1856 1.40 0.0891 0.1003 -12.62 
500 000 0.1882 0.1866 0.85 0.0892 0.0899 -0.74 
 
Besides the influence of an increasing number of image pairs we tested the dependency on 
the number of pixels resolving the velocity PDF. In Fig. 4 the development of the error in the 
mean as well as of the root mean square of the velocity is shown when coarser representa-
tions of the PDF are used. The distributions shown so far used 19 pixels to cover the whole 
PDF. Coarser representations give larger error, however, the increase is not very high. With 
a rather rough resolution of the PDF of 7 pixels the error in the mean velocity is still lower 
than ten percent. 
 

 
Fig. 4: Development of the errors in the 1st and 2nd moment of the reconstructed velocity PDF: 

100 000 images, 5% particle density, Gaussian shaped imposed PDF 
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So far all tests were shown with only 5% of the pixels covered by particles. In Figure 5 the 
dependency of the errors in the mean and in the root mean square of the velocity on the par-
ticle density are shown. It can be seen that, as one would expect, with a rise of covered pix-
els also the error increases. The best results can be gained in the range of 1 to 10% of the 
image covered by particles. But in this case one should take into account that when creating 
the synthetic images always one pixel was set to a value of 1.0 when a particle position was 
within the area of the pixel. So if by accident two particle positions laid within one pixel then 
this second particle would not be accounted setting up the intensity distribution leading to an 
increase of error from overlapping particle images. 
 

 
Fig. 5: Development of the errors in the 1st and 2nd moment of the reconstructed velocity PDF:  

43 bins, 500 000 images, Gaussian shaped imposed PDF 
 
 
5. CONCLUSION 

 
We derived theoretically, that the correlation of two consecutive PIV images consists of two 
parts, a deterministic one stemming from the displacement of the particles by the fluid veloci-
ty and a random one stemming from the random placement of particles. Removing the ran-
dom part gives us the opportunity to directly determine the PDF of the velocity from particle 
image pairs to single pixel accuracy. 
 
Based on this observation, we propose an algorithm to reconstruct the velocity PDF directly 
from PIV image pairs. We tested the algorithm using synthetically generated PIV images with 
the advantage that the imposed velocity PDF was known exactly. Thus we were able to 
demonstrate that 

 the reconstructed PDF converges to the imposed one with an increasing number of im-

age pairs, 
 the first and second moments of the reconstructed PDF converge to the imposed ones 

with increasing number of image pairs, 
 non-Gaussian velocity PDF’s are reconstructed as well as Gaussian PDF’s 

 
One has to note that so far we only demonstrated a proof of concept. The method is con-
verging with number of image pairs. Two main advantages over conventional estimation of 
PIV image pairs with interrogation windows can be stated: first an accuracy of single pixel 
and second the avoidance of searching for a correlation maximum in situations where there 
is no distinct peak in the correlation. Instead, it fully resolves the non-Gaussian velocity PDF. 
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